

KNOWLEDGE ENGINEERING FOR DESIGN

AUTOMATION

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit Twente,

op gezag van de rector magnificus,
prof. dr. H. Brinksma,

volgens besluit van het College voor Promoties
in het openbaar te verdedigen

op vrijdag 24 april 2009 om 15.00 uur

door

Wouter Olivier Schotborgh
geboren op 8 juni 1979

te Groningen

Dit proefschrift is goedgekeurd door de promotor
prof. dr. ir. F.J.A.M. van Houten.

ISBN 978-90-365-2801-6

Copyright © Wouter O. Schotborgh, 2009

All rights reserved.

KNOWLEDGE ENGINEERING FOR DESIGN

AUTOMATION

PhD Thesis

By Wouter Olivier Schotborgh at the Faculty of Engineering Technology (CTW)
of the University of Twente, Enschede, the Netherlands.

Enschede, 24 april 2009

De promotiecommissie:

prof. dr. F. Eising Universiteit Twente, voorzitter, secretaris

prof. dr. ir. F.J.A.M. van Houten Universiteit Twente, promotor

prof. dr. ir. A. de Boer Universiteit Twente

prof. dr. ir. O.A.M. Fisscher Universiteit Twente

prof. dr. J. van Hillegersberg Universiteit Twente

prof. D. Brissaud Grenoble Institute of Technology

prof. dr. K. Shea Technical University München

prof. dr. T. Tomiyama Technische Universiteit Delft

dr. G. Still Universiteit Twente

Keywords: Knowledge Engineering, Engineering Design,
Expert Knowledge, Design Automation

Aan mijn ouders,

aan Kelly

Summary

Engineering design teams face many challenges, one of which is the time pressure
on the product creation process. A wide range of Information and Communica-
tions Technology solutions is available to relieve the time pressure and increase
overall efficiency. A promising type of software is that which automates a design
process and generates design candidates, based on specifications of required be-
havior. Visual presentation of multiple solutions in a “solution space” provides
insight in the trends, limitations and possibilities. This higher-level knowledge
enables the use of “design intent” and tacit experience knowledge to select the
best design for a specific application.

This thesis focuses on software support for (engineering) design processes that
use existing technologies and knowledge, with parametric information and quan-
titative data. This covers continuous and discontinuous parameters, as well as a
mix of linear and non-linear equations, logic and fuzzy estimations, for static and
dynamic topologies. The scope includes the design of machine elements, product
components and product systems.

Academic research has explored the automation of design processes for a wide
range of engineering problems, including the scope of this thesis. A variety of
theories, frameworks and techniques are developed to automate models of de-
sign problems. Sophisticated software support is made possible with advanced
functionalities to navigate and explore design solutions. Although the technical
feasibility appears to be proved, the intended software support is not present in
industry to the extent that it could.

The goal of this thesis is to increase the use of design automation software
in industrial environments. The focus lies on efficient development of the models
that are required for automation, with the emphasis on expert knowledge for the
design creation phase. A method is proposed to acquire the necessary models
and determine the software functionality. The functionality of the software is
described in advance to discuss the added value with the engineers that will use

VII

the software.
The method integrates concepts from existing domains of knowledge acqui-

sition, modeling, automation and software development. The input and output
of each step are standardized to allow a predictable development method. Stan-
dardization is done by using generic models of the design process and expert
knowledge. Observations “how” designers design are used to define these models.
The result is a generic procedure that starts with a design process and ends with
software that generates multiple designs.

The first step of the method is to bring overview to the design environment.
The original design context is divided, or decomposed, into distinct levels of ab-
straction, each with their own expressiveness and characteristics. The levels of
abstraction discriminate between issues of higher or lower importance. A suitabil-
ity check is provided to determine if the procedures from this thesis are applicable.

After the levels of abstraction are identified, the sub-process of analysis is used
to prescribe the further breakdown into sub-processes and information. Analysis-
oriented decomposition identifies three distinct types of information: performance,
scenario and embodiment. The design process is divided in sub-processes of anal-
ysis, synthesis, evaluation and adjustment.

The decomposition phase is a key aspect for predictable and efficient modeling
and software development. Decomposition allows fast knowledge acquisition, less
complex modeling, automation with a generic and predictable software function-
ality.

The generic model of the design process is used to provide a standardized
description of a design process. The functionalities of the software modules, as
well as the complete system, are known at this point.

The step after decomposition acquires the expert knowledge and models it
in a format called PaRC (acronym for Parameters, Resolve rule and Constrain
rule). PaRC consists of entities to define the design artifact (parameters and
topological elements) and knowledge rules that enable design generation (resolve,
constrain and expand rules: R-, C- and X-rules). The acquired model describes
the design expert’s experience and know-how in solving design problems. The last
steps of the procedure involve automation of the knowledge models and software
development.

A generic software architecture mimics the model of the design process and
has generic interfaces to the PaRC knowledge models. As a result, software de-
velopment effort is reduced when building multiple software programs.

The proposed development method is applied to two industrial expert design
cases and four cases with explicitly documented knowledge. The design process
and expert knowledge are both modeled, and software prototypes are developed.

VIII

Samenvatting

Het productcreatieproces ondervindt een toenemende druk om producten van ho-
ge kwaliteit in steeds kortere tijd te ontwikkelen. Informatie en Communicatie
Technologie biedt een rijk scala aan oplossingen om de efficiëntie te verhogen en
de concurrentie voor te blijven. Een veelbelovend type software ondersteunt het
productcreatieproces door ontwerpalternatieven voor te stellen, op basis van ge-
wenste product specificaties. Door automatisch vele alternatieve ontwerpen te
genereren en deze aan de ontwerper te presenteren wordt een “oplossingsruimte”
gecreëerd. Deze oplossingsruimte biedt in een vroeg stadium van het ontwerppro-
ces inzicht in de mogelijkheden en beperkingen. Dit stelt de gebruiker in staat om
met intüıtie en ervaring het beste ontwerp te kiezen voor een bepaalde toepassing.
Ontwerpers besparen tijd, verhogen de kwaliteit van de uiteindelijke oplossing en
verkrijgen hogere-orde kennis over de ontwerpproblematiek.

Dit proefschrift richt zich op software ondersteuning van ontwerpprocessen
met expertkennis over bestaande technologieën, met parametrische informatie en
kwantitatieve getalswaarden. Hierbinnen vallen continue en discontinue varia-
belen met een mix van lineaire en niet-lineaire vergelijkingen, logica en afschat-
tingen, voor statische en dynamische topologieën. Het toepassingsgebied beslaat
machine-elementen, productcomponenten en productsystemen.

De academische wereld heeft automatisering van vele typen ontwerpproble-
men onderzocht, onder meer voor het toepassingsgebied van dit proefschrift. Een
uitgebreide verzameling theorieën, modellen en technieken is ontwikkeld die ge-
avanceerde ondersteuning mogelijk maken. Alhoewel de technische haalbaarheid
lijkt te zijn aangetoond, worden automatisering van ontwerpprocessen niet veel-
vuldig in de industrie toegepast.

Dit proefschrift streeft naar hogere mate van ontwerpondersteuning voor de
industrie. De focus ligt op het snel en efficiënt ontwikkelen van de modellen die
noodzakelijk zijn om een ontwerpproces te kunnen automatiseren. De nadruk
ligt op expertkennis voor de creatiefase van het ontwerpproces. Een methodische

IX

aanpak wordt beschreven om de benodigde modellen te construeren en de software
functionaliteit vast te stellen.

De methode is ontwikkeld door integratie van concepten uit bestaande on-
derzoeksgebieden als kennisacquisitie, modelvorming, automatisering en softwa-
reontwikkeling. De gegevensuitwisseling tussen de diverse activiteiten is gestan-
daardiseerd om een voorspelbare procedure te documenteren. De standaardisatie
maakt gebruik van generieke modellen van het ontwerpproces en expertkennis. De
modellen zijn opgesteld aan de hand van observaties hoe een ontwerper ontwerpt
en tot oplossingen komt. Het resultaat is een ontwikkelprocedure die het proces
voorschrijft van (expert)ontwerper tot en met softwaresysteem.

De eerste stap is het in kaart brengen van de ontwerpcontext. Het ontwerp-
proces wordt onderverdeeld in abstractieniveaus met elk eigen informatie en pro-
cessen. De abstractieniveaus verdelen het proces in zaken van hogere of lagere
mate van belangrijkheid. Een test wijst uit of een abstractieniveau geschikt is
voor automatisering op basis van methoden uit dit proefschrift.

Na identificatie van de abstractieniveaus, wordt deze verder verdeeld in pro-
cessen en informatiesets. De analysemethode is hiervoor het centrale concept,
waarbij drie typen informatie worden gedefinieerd: performance, scenario en em-
bodiment. Het ontwerpproces wordt verder onderverdeeld in de processen analyse,
synthese, evaluatie en aanpassen. Deze fase is de decompositie fase.

De decompositie fase is kritiek om voorspelbaar en efficiënt een softwarepro-
gramma te kunnen ontwikkelen. Goede decompositie resulteert in snelle kennis-
acquisitie en minder complexe modellen die bovendien geautomatiseerd kunnen
worden met een relatief simpel algoritme dat tevens generiek toepasbaar is. Hier-
door is de kernfunctionaliteit van de software in een vroeg stadium bekend.

De activiteit na decompositie is het verkrijgen en modelleren van de expertken-
nis in een beschrijving genaamd PaRC (acroniem voor Parameters, Resolve-regels
en Constrain-regels). PaRC bestaat uit bouwstenen om een ontwerpobject te defi-
niëren (parameters en topologische elementen) en kennisregels om ontwerpcreatie
te simuleren (resolve-, constrain- en expandregels: R-, C- en X-regels).

Het kennisacquisitieproces begint met het eindresultaat van de decompositie-
fase. Specifieke vragen worden aangereikt om dit proces efficiënt te laten verlopen.
Het verkregen model beschrijft de kennis en know-how om ontwerpen te creëren.

De laatste stap van de ontwikkelprocedure beschrijft automatisering van de
kennismodellen en softwareontwikkeling. Een generieke softwarearchitectuur is
gebaseerd op het model van het ontwerpproces en heeft generieke interfaces naar
de PaRC kennismodellen. Hierdoor wordt de vereiste inspanning om meerdere
softwaresystemen te ontwikkelen verder gereduceerd.

De beschreven ontwikkelprocedure voor ontwerpautomatisering is toegepast op
twee industriële (expert)ontwerpproblemen en een viertal ontwerpproblemen die
beschreven staan in handboeken. Modellen van het ontwerpproces en expertkennis
zijn opgesteld, en prototype softwareprogramma’s zijn ontwikkeld.

X

Table of Contents

Summary VII

Samenvatting IX

Table of Contents XI

1 Introduction 1
1.1 Software support for engineering design 1
1.2 Solution presentation . 2
1.3 Multiple solutions . 4
1.4 Software development . 6
1.5 Focus and scope . 7
1.6 Research hypothesis . 7
1.7 Thesis outline . 8

2 Literature 9
2.1 Theory of Technical Systems . 9
2.2 General Design Theory . 10
2.3 Function-Behavior-State . 10
2.4 Knowledge Intensive Engineering Framework 12
2.5 KADS and KARL . 13
2.6 Computational Synthesis . 14
2.7 Algorithms . 15

2.7.1 Constraint Programming 15
2.7.2 Optimization . 15

2.8 MOKA . 16
2.9 Knowledge Engineering . 17
2.10 Previous research . 18

3 Model of synthesis knowledge 23
3.1 A model of design . 24

3.1.1 Information . 24
3.1.2 Processes . 25
3.1.3 Levels of abstraction . 26

XI

TABLE OF CONTENTS

3.2 What is synthesis knowledge . 27
3.3 A model of synthesis knowledge . 29

3.3.1 Challenges . 29
3.3.2 Embodiment . 30
3.3.3 Knowledge rules . 31

3.4 Synthesis algorithm . 35
3.5 Limitations . 37

3.5.1 Systems of equations . 37
3.5.2 Consistency and solvability 38
3.5.3 Revising decisions . 38
3.5.4 Algorithm . 39

4 Knowledge engineering method 41
4.1 Step 1: identify levels of abstraction 43
4.2 Step 2: selection . 43
4.3 Step 3: analysis formalization . 44

4.3.1 Differences in analysis methods 45
4.4 Step 4: synthesis formalization . 47
4.5 The knowledge document . 53
4.6 Limitations . 53

5 Software development method 55
5.1 Step 1: overview . 57
5.2 Step 2: selection . 57
5.3 Step 3: modeling . 57
5.4 Step 4: automation and implementation 58
5.5 step 5: user interaction . 59

6 Implementation and realization 63
6.1 Architecture . 63
6.2 Industrial cases . 68

6.2.1 Optical chamber of an XRF spectrometer 68
6.2.2 Baggage handling system 77

6.3 Explicitly documented cases . 84
6.3.1 Belt drive . 84
6.3.2 Compression spring . 90
6.3.3 Extension spring . 92
6.3.4 Torsion spring . 93

6.4 Comparison . 94
6.4.1 R-rules . 94
6.4.2 Parameter dependency graphs 96
6.4.3 Development time . 98

7 Conclusions & Recommendations 101

XII

TABLE OF CONTENTS

7.1 Conclusions . 101
7.2 Recommendations . 105

7.2.1 Industrial decomposition . 105
7.2.2 Knowledge acquisition . 105
7.2.3 Modeling and automation 106
7.2.4 Generic software development 106
7.2.5 User interaction . 107
7.2.6 General . 107

List of References 111

Appendices

A Synthesis knowledge 119
A.1 Optical chamber . 119

A.1.1 Elements and parameters 119
A.1.2 X-rules . 121
A.1.3 R-rules . 121
A.1.4 C-rules . 122

A.2 Baggage handling systems . 123
A.2.1 Elements . 123
A.2.2 Parameters . 125
A.2.3 X-rules . 128
A.2.4 R-rules . 129

A.3 Compression spring . 130
A.3.1 Parameters . 130
A.3.2 R-rules . 131
A.3.3 C-rules . 132

A.4 Extension spring . 133
A.4.1 Parameters . 133
A.4.2 R-rules . 134
A.4.3 C-rules . 135

A.5 Torsion spring . 135
A.5.1 Parameters . 135
A.5.2 R-rules . 136
A.5.3 C-rules . 137

XIII

List of Figures

1.1 point, path and cloud solution spaces 2
1.2 software support for engineering design 3
1.3 online flight booking application (source: website KLM) 4
1.4 solutions for suspension design . 5
1.5 knowledge domains and the software development 6

2.1 the FBPSS framework (after [56]) 11
2.2 the FBS framework (after [16]) . 12
2.3 compression spring designer . 20
2.4 synthesis module development time 21

3.1 embodiment and performance (image courtesy of COMSOL Inc) . 25
3.2 design process . 26
3.3 levels of abstraction (after [26]) . 27

4.1 knowledge engineering . 42
4.2 three types of analysis . 46
4.3 tube position . 49
4.4 element types for functions . 51
4.5 parameter dependency graph, example 52

5.1 software development . 56
5.2 requirements input, belt drive case 60
5.3 solutions representation, belt drive case 61

6.1 architecture . 64
6.2 central data storage, class model 65
6.3 synthesis module, class model . 65
6.4 PaRC model, class model . 65
6.5 implementation example . 67
6.6 spectrometer and optical chamber (copyright PANalytical BV) . . 69
6.7 optical chamber, embodiment . 72
6.8 parameter dependency graph, optical chamber 74
6.9 user interface, input . 75

XV

LIST OF FIGURES

6.10 user interface, output . 75
6.12 baggage handling system (copyright Vanderlande Industries) . . . 77
6.13 process flow design (PFD) . 78
6.14 PFD process . 79
6.15 parameter dependency graph, baggage handling system 82
6.16 material flow diagram . 83
6.17 belt drive, embodiment and scenario 85
6.18 parameter dependency graph, belt drive 88
6.19 graphical user interface, belt drive 89
6.20 compression spring . 90
6.21 parameter dependency graph, compression spring 91
6.22 extension spring . 92
6.23 torsion spring . 93
6.24 R-rules versus parameters . 94
6.25 number of R-rules per parameter 95
6.26 comparison of parameter dependency graphs 97
6.27 synthesis module development time 99

7.1 knowledge domains and software development 105
7.2 alternative development procedures 108

A.1 optical axis . 121

XVI

Chapter 1
Introduction

We encounter in the world around us an enormous stream of products with con-
stantly changing features and appearances. It seems that a product is (re)designed
for nearly every taste, price range and user group. This trend of increasing prod-
uct diversity has a profound impact on companies, teams and individuals that
develop these products [33].

One of the reactions is to use existing technologies instead of innovative con-
cepts to develop the required diversity of high quality products at affordable prices
[18]. Development teams are supplied with a flexible network of internal and ex-
ternal technology sources to enable quick assimilation of existing technologies.
However, this increases the time pressure on new product development because
the same technologies are also available for the competition. Therefor, in order
to remain competitive, one must increase one’s product development efficiency.

Companies have several strategies to improve efficiency of development teams,
one of which is implementation of software support for the design processes [36].
The research in this thesis aims to improve the software support for the (engi-
neering) design processes that use existing technologies. The subsequent sections
describe the currently available software and identify possible room for improve-
ment.

1.1 Software support for engineering design

The fast development of consumer markets increases the pressure on the prod-
uct design process to reduce time to market [21] [34]. Uncertainties and risks
are reduced where possible [1] and information and communication technology is
adopted to enhance flexibility, speed and efficiency of the process [36] [17].

1

Chapter 1. Introduction

A review of the commercially available software for (engineering) design re-
veals that the majority focuses on analysis, drawing and/or refining details of
established design concepts [49] [42] [32]. Only little software support addresses
the creation process of designs. The majority of software requires a fully defined
design as input, which forces the engineer to plan ahead and make choices. After
a weak point is identified by simulation, this can be corrected in a number of
ways. Only little methodology is provided for guidance about what to do next.

Ullman [49] describes an ideal support system for the creation of new prod-
ucts: insight is provided in the relationship between the customer wishes and the
available product options. The search for the best design is an automated process,
guided by the preferences of the engineer. Support systems generate and present
alternative solutions that give an overview of what is possible. This allows experts
to use their experience and “design intent” to select the solution that is better
than all others.

1.2 Solution presentation

A feature to distinguish support software for engineering design is the way each
type represents a solution space, illustrates in Figure 1.1. A single software pro-
gram can be of a single type or a mix of these types.

When an engineer finishes a design, he/she can execute analysis to reveal some
quality characteristics, such as strength, dynamic response or a more intuitive
judgment about aesthetics or user-friendliness. After analysis, a design is placed
somewhere on a quality scale as a single point, Figure 1.1a. The point gives
valuable information about the quality of a design, but reveals nothing about
alternatives or what the limits are of achievable quality.

a design

quality 1

quality 2

(a) point

quality 1

quality 2

(b) path (c) cloud

quality 1

quality 2

Figure 1.1: point, path and cloud solution spaces

Examples of software that gives a single point solution are shown in Figure 1.2:
a finite element analysis of a crankshaft predicts its mechanical behavior before
the part is produced, Figure 1.2a. The layout of a plant is analyzed to check if
all pipes are designed correctly, Figure 1.2b. Analysis software is often essential
to deliver high quality products, meet deadlines and prevent costly redesign.

The next type of software provides information about multiple designs: each
design is made from a modification of a previous design, with the goal of opti-

2

1.2 Solution presentation

(a) finite element analysis of crankshaft
(image courtesy of COMSOL Inc.)

(b) plant simulation (image courtesy of Vertex
Systems Oy)

Figure 1.2: software support for engineering design

mizing its quality, Figure 1.1b. The process requires a design as starting point
and an objective function to navigate toward the optimum. An algorithm inter-
prets the result of a certain action and decides what to do next. Optimization
research is being done for decades, if not centuries. A wide range of techniques,
literature and implemented toolboxes exist that can perform optimization on a
mathematical model.

The third type of software provides a “cloud” of solution points that are not
created based on other points, Figure 1.1c. The difference between the second and
third type is that the third type contains only initial designs, where each point
satisfies the modeling constraints. Each point of the cloud can serve as starting
points for further optimization.

The intended support this thesis aims to provide to engineers is software that
generates clouds. A cloud indicates the possibilities and limitations of design
solutions, which is higher level design knowledge that is derived by observing the
shape of a cloud. No explicit effort is taken (yet) to find the extremities of the
solution space. Afterward, some solutions can be selected for further optimization,
either by human or computational methods. In both cases, initial points are
required for each new design problem and a cloud scattered across the solution
space can give valuable information about global optima.

This thesis aims to develop software of the third type for engineering design.
Multiple design solutions are generated based on a specification of the required
product quality. The cloud-type software offers insight in the possibilities and
limitations of engineering design solutions.

3

Chapter 1. Introduction

1.3 Multiple solutions

A simple (non-engineering) example of software that provides multiple solutions
is an online flight booking applications, Figure 1.3. Consider the booking process
of a flight from Amsterdam to New York. The software presents an overview of
multiple alternatives to check and compare the prices and time schedules. The
process to select the best option is an exploration of alternatives. The software
accepts and supports the fact that the user knows more than the application.
Its added value extends from pure automation of a task toward support for the
entire process from customer wishes to solution: the software generates possible
solutions and allows the user to select the best.

Figure 1.3: online flight booking application (source: website KLM)

Software with multiple solutions for engineering design provides a more tech-
nically related view on the possibilities, limitations and qualities. An example is
shown in Figure 1.4, for the design of a car suspension system that consists of a
damper and a spring. The design goal is to comfortably absorb a bump in the
road: the car should go up and down only slightly and quickly stop bouncing.
Consider the situation of a car driving up a curb of say 10cm, at a speed of 5
km/h.

The designer has to find the right specifications for the suspension system,
consisting of a spring and damper in parallel arrangement, indicated in Figure
1.4a. The software generates and analyzes multiple designs. The resulting solution
space provides quantitative information about the possible behaviors of designs.
The behaviors of interest are in this case the height and the duration of the
bouncing motion. The software allows the designer to see what is possible, and
select the solution he/she prefers.

4

1.3 Multiple solutions

Figure 1.4b depicts the quantitative behavior specifications of about 200 de-
signs: the overshoot on the y-axis and the settling time on the x-axis. Each dot
represents a quantified design that is generated. The best designs are located in
the bottom-left corner (the red group).

Figure 1.4c shows a plot of the two main design variables: damping coefficient
and spring coefficient. In this plot, the same group of best designs is located at the
upper section of the solution cloud (the red group). Observing these two plots,
the designer sees what springs and dampers will result in a comfortable ride.

The software from Figure 1.4 uses knowledge from commonly used engineering
handbooks. However, the insight on the design solutions is difficult to obtain
from theoretical analysis and trial-and-error iterations by hand. The software
provides an overview of possibilities, which saves time and ensures an optimal
design because the designer is aware of the alternatives and picks the design that
suits him best.

(a) (b) overshoot vs. settling time (c) design alternatives

Figure 1.4: solutions for suspension design

The software discussed in this thesis propose solutions based on knowledge
rules. A list of rules is defined beforehand and an algorithm operates upon this
knowledge to find design solutions. Example of such knowledge rules are equations
and if-then logic. Knowledge from experts is used when available and accepted
as “truth”, even though the scientific rigor of such knowledge is perhaps not
explicitly researched. However, there is a growing discrepancy between software
support for consumers to reduce search time and improve decision quality (e.g.
route planners and online shops) and engineering design. My goal is to enable
large scale deployment of cloud-type design automation software for present-day
engineering design.

Decades of academic research have explored many different approaches and
algorithms to realize support systems with design automation for point, path and
cloud-type solution representation. Theories, frameworks and algorithms have
been developed to enable advanced forms of intelligent, knowledge-based support
for increasingly complex problems. The technical feasibility for a large range of
problems within engineering design has been proved.

5

Chapter 1. Introduction

A bottleneck that begins to emerge is the development process of the software
systems themselves. For design problems with dynamic topologies, Cagan et al.
[6] note this process is little documented. For optimization systems, Papalambros
and Wilde [31] provide a checklist and guideline for computational optimization
(discussed in more detail in Section 2.7.1). The modeling is done by someone who
understands optimization and is able to translate the design case to a computa-
tional model and algorithm. Prototypes developed at my own university indicate
that different developers lead to different models with different software function-
ality and require a different amount of time. My goal is to prescribe the modeling
activity as specifically as possible, leading to a more controllable process and end
result. The trade-off I will have is the applicable scope. Papalambros and Wilde
[31] offer more general guidelines for a broader scope of problems, while I aim at
specific development guidelines for a more narrow scope.

1.4 Software development

A number of concepts, methods and theories from several knowledge domains are
required during development of design automation software, Figure 1.5. The con-
tinuous path through the domains, from left to right, indicates the development
process of design automation software based on expert knowledge.

The development process begins with a knowledge source. The design pro-
cesses of the source are first decomposed to reduce complexity, gain overview and
determine suitable system boundaries for the software. After selection of a design
process, the relevant knowledge is acquired and made verbally explicit. Next,
the knowledge is modeled into a format that is subsequently automated by an
algorithm. When developing several different software applications, the concept
of generic software development is used to reduce the required effort. Finally,
the user interaction is determined to offer the best interaction and highest added
value for the end-user.

knowledge
source

design
automation
software

de
co

m
po

si
tio

n

kn
ow

le
dg

e
ac

qu
is
iti
on

m
od

el
in
g

au
to

m
at

io
n

ge
ne

ric
 s
of

tw
ar

e

de
ve

lo
pm

en
t

us
er

 in
te

ra
ct
io
n

Figure 1.5: knowledge domains and the software development

A development method for design automation software should be well struc-
tured and documented, and have a clear applicability scope. The person to exe-
cute the method is not forced to become an expert in all the knowledge domains,

6

1.5 Focus and scope

but is guided by a continuous procedure. This includes the activities from first
meeting with the experts, to implementation of the knowledge base.

This thesis proposes a development method for design automation applica-
tions and uses a model of synthesis knowledge as leading concept to integrate the
knowledge domains.

1.5 Focus and scope

Software that creates many initial solutions requires, in the minimum, a module
that creates a design and a module that analyzes a design. The act of design
creation is labeled ”synthesis”. This term is chosen to emphasize its opposition
with analysis: synthesis begins with required specifications and results in a design,
while analysis begins with a design and results in quality information. Synthesis
knowledge is all information and relations that are used to generate a design. The
knowledge engineering activities to obtain the model of synthesis knowledge is the
focus of this thesis.

The scope of this thesis is engineering design that uses existing knowledge
of known technologies. The knowledge itself has parametric information and
quantitative data. The source of this knowledge is available, either as human
expert designer or explicitly documented.

1.6 Research hypothesis

The hypothesis of this thesis is:

a model of synthesis knowledge forms the basis of a knowledge engineering
method for the development of design automation software.

With the following definitions:� model: a simplified mathematical description of a system or process, used
to assist calculations and predictions;� knowledge engineering: the process to develop or design a computational
model of knowledge;� synthesis knowledge: information and relations acquired through experience
or education that are used during the synthesis phase of design: where
designs are generated;� design automation software: software that generates (multiple) designs.

The hypothesis is tested within the previously described scope.

7

Chapter 1. Introduction

1.7 Thesis outline

A literature survey is made to position the scope and research goal relative to
existing nomenclature and research projects. Section 3 proposes a model of the
design process that is generic within scope and aimed at development of design
automation software. The input and output of the synthesis phase is defined and
a model for the activity of synthesis proposed. A knowledge engineering method
is derived from this synthesis model to acquire and model the relevant knowledge
from literature or human source, discussed in Section 4. How this method is used
during software development is explained in Section 5. Chapter 6 describes the
implementation of the development method and knowledge engineering method
for two cases from industry, and four cases from engineering handbooks. Proto-
types are developed and the models of synthesis knowledge are compared to each
other. Chapter 7 concludes the thesis and proposes several future directions of
research.

8

Chapter 2
Literature

An overview of several theories and research programs is provided to position the
research of this thesis.

First, the Theory of Technical Systems, General Design Theory and the Function-
Behavior-State model is addressed for general referencing. Next, the focus shifts
to projects of computational design support such as the framework of the Knowl-
edge Intensive Engineering Framework (KIEF), the KADS research project and
its more formal language KARL. Subsequently, Computational Synthesis is dis-
cussed together with algorithms of Constraint Programming and optimization.
The development process of design support systems is discussed by the MOKA
project and one section is dedicated to knowledge engineering. The research his-
tory at the Department of Design, Production and Management of the University
of Twente is described to illustrate the context in which this research is conducted.

2.1 Theory of Technical Systems

The Theory of Technical Systems (TTS) [19] explores the design process as broad
as possible, and aims to organize, store and reference all knowledge for and about
design. Central to the theory is the engineering design process to design a Techni-
cal System (TS). A TS is a transformation system that is described in processes,
functions, organs and components.

The lowest levels of detail are the so-called properties. These properties are
all those features which belong substantially to the object. Two types of prop-
erties exist: internal and external. Internal properties are under the control of
the engineering designer, such as the structure description (components, arrange-
ments), forms and dimension. The external properties are the observable and
detectable properties. In general, TTS gives a broad, qualitative description on
the relationships between properties.

9

Chapter 2. Literature

The knowledge of TTS relates the design process at enterprise level, but also
descends in level of detail to technical knowledge: knowledge about artificial ob-
jects which have been created and produced to accomplish certain goals. TTS
identifies several kinds of knowledge, such as basic knowledge about strength,
materials, manufacturing, and functional knowledge about models and processes.
Knowledge is available explicitly or tacitly and should always bring an answer to
an immediate question.

This thesis focuses on the “property” entities of TSS and the knowledge rules
that relate them.

2.2 General Design Theory

The General Design Theory (GDT) is a formal theory of design knowledge to
clarify the human ability of designing in a scientific way [54]. It also aims to
produce practical knowledge about design methodology and the construction of
CAD systems [54].

GDT describes the design of artifacts to fulfill functions. The inputs of the
design process are specifications, and design itself is a process of mapping these
specifications within a functional space to an attribute space. Design is a stepwise
refinement process mediated by metamodels, toward a definite description of the
design object in the attribute space. The attribute space is the definition of the
design object with sufficient level of detail to be manufactured.

The theory of GDT describes design in a broad sense, while this thesis consid-
ers parametric design of existing entities. In GDT terms, the software developed
from this thesis aims to explore the neighborhood of an entity in the attribute
space. Due to discontinuous degrees of freedom of the entity this might not be a
continuous space, but still relatively predictable.

2.3 Function-Behavior-State

The Function-Behavior-State concepts offer a language to describe design object
in different dimensions [50] [56]. To position this thesis, I discuss the concept
of structure as well, to explicitly differentiate between the design artifact and
changes in its attributes.

Figure 2.1 depicts the dimensions of Function, Behavior, State and Structure
relative to each other. The “lowest” dimension is the structure of the design
artifact, i.e. what it is. Putting an artifact to work is described in the dimen-
sion state. The states can be series of structure attributes, flows of information,
material and energy. The overall relationship between these states describes the
behavior of the artifact, i.e. what it does. Finally, at the highest dimension, the
behavior is used to fulfill a certain function within a larger context.

Beside the dimensions is the concept of principle, which governs the funda-
mental relations between structure, state and behavior. These are the laws of e.g.

10

2.3 Function-Behavior-State

physics or kinematics that allow development of quantitative relations between
the different dimensions.

This thesis focuses on the structure and state dimensions, with explicitly
known relations to behavior.

Function

Behavior

State

Structure

Principle

d
im

e
n
s
io

n
s

Figure 2.1: the FBPSS framework (after [56])

The process of designing is modeled by Gero and Kannengieser using the situ-
ated Function-Behavior-Structure (sFBS) framework [16]. Here, slightly different
definitions of the concepts are used. In short, the function describes what the
object is for, behavior describes what it does and the structure describes what it
is.

A brief description of the processes of the sFBS framework is given, as de-
picted in Figure 2.2 (solid lines are processes also described in this thesis): the
design process begins by the formulation process (1). This translates the required
function into behavior that is expected to enable this function. A synthesis pro-
cess (2) generates a structure based on this expected behavior. Once a candidate
structure is generated, process (3) analyzes this to derive its actual behavior. The
evaluation process (4) compares the actual behavior with the expected, and de-
cides the next step. Process (5) produces the documentation of the structure for
constructing or manufacturing the product. After evaluation, three types of re-
formulation processes are possible: process (6) addresses changes in the structure
description; process (7) addresses changes in the behavior variables and process
(8) does this in the functional variables.

The sFBS framework of the design process further consists of three interactive
worlds:

1. external world: the world composed of representations outside the designer
or design agent;

2. interpreted world: the world that is built up inside the designer or design
agent. This world is seen as an abstraction of the external world;

3. expected world: the world that the imagined actions of the designer or
design agent will produce.

11

Chapter 2. Literature

Function

Expected
Behavior

Actual
Behavior

Structure

1

2

4

3

7

8

Documentation

6

5

Figure 2.2: the FBS framework (after [16])

This thesis models a quantitative, parametric design process as an interpreted
world representation for specific, quantifiable behavior variables. Knowledge rules
are divided into the processes of synthesis, analysis, evaluation and adjustment.
An explicit division is made between the artifact model and the knowledge rules
that govern the relations between them. The link to function and documentation
is outside the scope.

2.4 Knowledge Intensive Engineering Framework

The Knowledge Intensive Engineering Framework (KIEF) supports the design
process by means of a software assistant that predicts a design object’s behaviors
across domains [55]. KIEF integrates domain knowledge such as electronics and
dynamics, allowing multi-domain analysis, causality of phenomena and qualitative
reasoning about behavior.

The building blocks of KIEF are related to an ontology of physical concepts,
much like geometric features. The knowledge of domain theories is related to
these physical concepts, which are stored in a library to allow for a faster and
more expressive support system. Modeling design objects in multiple domains
is done through a “metamodel”. This metamodel exists on the abstraction level
above the domains and enables flexible integration of their knowledge theories.

First, a description of a new design object is made in different domains and
connected to the metamodel. An initial metamodel describes the design object in
conceptual and topological terms. The second step involves enriching the initial
metamodel with causality knowledge to a point where the design solutions can be
reasoned upon. The last step is the actual use of KIEF as a design assistant: the

12

2.5 KADS and KARL

prediction of unexpected physical phenomena across domains.

In relation to KIEF, the content of this thesis is domain agnostic. KIEF
appears to focus more on the qualitative and/or causal analysis and simulation
of design objects on the behavior level, while this thesis relates to the generation
of design objects themselves, and the knowledge required for this.

2.5 KADS and KARL

The Knowledge Acquisition and Documentation Structuring (KADS) research
offers a structured development process for knowledge-based systems [53]. It
focuses on Expert Systems (ES) that reason about situations with the goal of
extending the situation description to reveal causality, i.e. what happens and
why. In order to do so, the ES requires a knowledge base that describes facts,
conditions, inferences and dependencies. This causality knowledge is challenging
to acquire from domain experts, as they are experts in problem solving, not in
explaining their solutions [14]. As a result, development methods for ES moved
away from the concept of knowledge acquisition as “direct knowledge transfer”
and instead introduce a Knowledge Engineering (KE) process.

During this KE process, a specialized knowledge engineer develops, or de-
signs, a computational model of some expert’s knowledge. This cyclic process
requires the knowledge engineer to observe and interpret the original knowledge,
and verify the correctness of the new computational model. KADS offers several
semi-formal models to structure the knowledge of experts and aid the modeling
activity. A further formalization of this approach is the Knowledge Acquisition
and Representation Language (KARL) [14]. KARL supports the process to for-
malize the knowledge from knowledge engineer into a software language. The
result is a formal modeling language that can infer and reason without supervi-
sion, given certain strict mathematical conditions. Because of the formalization,
KARL provides support such as graphical representation and an interpreter and
debugger of knowledge. One advantage of this knowledge engineering approach is
that the knowledge model can have high expressiveness and the problem solving
capabilities exceed that of a single expert.

Summarizing, one could say that knowledge-based systems that reason about
cause and effect require knowledge engineering because the causal knowledge is
difficult to extract directly. The modeling is done in a formal modeling language
because the reasoning algorithm require mathematical rigor to reason through the
knowledge base autonomously.

The type of engineering design problems addressed in this thesis do not re-
quire causality knowledge, because only automation is required. This reduces the
need for knowledge acquisition of causality knowledge and a formal mathematical
language or reasoning algorithm.

13

Chapter 2. Literature

2.6 Computational Synthesis

A research overview of automation and optimization of design problems with
variable topologies is given by Chakrabarti [9] and by Antonsson and Cagan [2].

The A-Design theory to computational synthesis implements an agent-based
approach [8]. Four classes of goal-directed agents are used to generate a wide
range of solutions. Configuration-agents create solutions qualitatively by random
selections of component and connect their input with output. Instantiation-agents
fix component values, determining the parameters of the design. Modification
of existing solutions is done by the fragmentation-agents. Each agent is given
a preference while performing its task, resulting in a broad exploration of the
solution space. User preferences and learning algorithms from past designs are
used to influence the solution generation process through manager-agents. These
agents steer the optimization and search process by adjusting the goals of the
other agents.

Computational synthesis using the A-Design theory offers support for de-
sign processes ranging from shape driven (architectural) design [8] [2] to electro-
mechanical systems [7]. It has also proved efficient in the travelling salesperson
problem and allows self-learning, as presented by Moss et al. [29]. A generic
flowchart for computational synthesis has emerged for agent-based synthesis tools
[6].

The concept of grammars offers a formalization of design synthesis knowledge.
The result is a form of production rules, or graph based pattern recognitions that
expand an initial graph into an eventual design. It supports geometric represen-
tations, reasoning and emergent shape properties [2].

Within the mechanical engineering domain, a grammar is a mapping between
a function of an artifact and its form [23]. Generating solutions on both the
topological and parametric level can be done using so-called parallel grammars,
e.g. for gear design [44].

Graph grammars are used for topologies, networks of elements and to represent
conceptual functions of a design, e.g. [43] and [23], but also neural networks [51].
Because graph grammars modify a valid graph into another valid graph, each
state can be analyzed. This enables simultaneous synthesis and optimization in
e.g. MEMS design [5].

The class of design problems addressed in this thesis also have topological
degrees of freedom, but can be described parametrically. This thesis further
focuses on the generation of initial designs. Until that initial design is found, no
analysis is possible.

14

2.7 Algorithms

2.7 Algorithms

A wide range of algorithms is developed for the scope of problems I address. The
two groups of algorithms discussed briefly here provide a view of the wide range
of algorithms that can be applied once a model is defined.

2.7.1 Constraint Programming

Barták [3] provides an overview of the solving technology of Constraint Program-
ming to automate design processes and generate multiple solutions. Constraint
Programming is a method of problem solving that allows declarative specifications
of relations among objects.

For the generation of initial solutions, as intended in this thesis, the con-
straint satisfaction algorithms are especially relevant, as systematic or stochastic
search. Constraint satisfaction generates initial solutions that satisfy the con-
straints, without further solution modification or optimization. Examples are
generate-and-test, backtracking (incremental expansion), the group of consistency
techniques and constraint propagation [22].

The backtracking algorithm is a basic but robust algorithm that is likely to
find one or more solutions and is interesting to use as a baseline.

2.7.2 Optimization

Many engineering problems require not just any good solution, but the optimal
solution. Optimization algorithms generate solutions toward an optimum, defined
by an objective function. Marler and Arora [24] present a survey of continuous
nonlinear multi-objective optimization methods for engineering problems.

Especially relevant for software that generates multiple solutions are the Pareto
optimal points: solutions that lie on the boundary of the solution space, and can-
not be improved in one performance without deteriorating in another.

One of the most common methods to handle multi-objective optimization is
to combine all objective functions into a single global function. Adding weights to
each individual objective allows modeling of engineering preferences. A different
approach is the “bounded objective function method”, which offers a hierarchy
in objective functions to separate between mandatory and additional objectives
that are to be minimized.

Avoiding local optimality is important to offer a higher level interpretation
of the solution space. Methods such as Tabu-search offer a heuristic procedure
for solving optimization problems, designed to guide other methods to escape the
trap of local optimality. Simulated Annealing [20] offers a stochastic optimization
procedure to find global optima and is widely applied in optimization problems.

The scope of problems addressed in this thesis has mixed continuous and dis-
continuous variables and non-linear relations of algebraic formulas and with logic.
Because I aim to generate a sufficiently filled solution space, a certain amount

15

Chapter 2. Literature

of random walk in the algorithm is required. In a later stage, the algorithm can
navigate more intelligently to find the Pareto solutions, thus giving the cloud
clear outlines. Exploration of the solution space would benefit from optimization
methods to handle multi-objective optimization.

A wide range of optimization algorithms are available in literature and imple-
mented for engineering problems. All these algorithms require a model to operate
upon, and it is the goal of this thesis to supply the models.

2.8 MOKA

MOKA is a European research project that started in 1998 and was active for
30 months. It provides a methodology to develop Knowledge-Based Engineering
(KBE) applications. MOKA is an acronym for Methodology and software tools
Oriented to Knowledge based engineering Applications. The goal is to reduce the
investment and risk of KBE development: similar to this thesis. The scope is
routine design in engineering with a strong link to geometry [27].

The MOKA approach prescribes the knowledge engineering process and sup-
ports it with a software tool. A standardization of knowledge was developed,
called ICARE (acronym for Illustration, Constraint, Activities, Rules and Enti-
ties). ICARE is divided into a part that describes the design object (constraints,
entities and illustrations) and a part to describe the design process (illustrations,
activities and rules). The entire process of KBE development is described as
follows:

1. knowledge gathering: collection of raw knowledge from design experts. A
broad view on the design object, processes, related aspects and background
information;

2. structuring: develop the so-called “Informal” model of knowledge, divided
into object information and design process descriptions. The ICARE con-
cepts are used to facilitate this step and the next;

3. formalizing: refine the Informal model and develop a rigorous “Formal”
model of the application knowledge, that is used to build the KBE system.
This model consists of two sections: the “Product Model” that describes the
object and related knowledge, and the “Design Process Model” defines the
execution and decision making order, plus the process of selection choices;

4. implementation: software development of a KBE application.

MOKA focuses on the second and third step. Software tools are developed to
allow non-KBE specialists to structure and formalize the relevant knowledge using
the ICARE concepts. The process is methodologically described in the MOKA
handbook [27].

16

2.9 Knowledge Engineering

Several commonalities and differences are identified between MOKA and this
thesis. The goals are quite similar: reduce the development effort of knowledge-
based software to support the design process. But, there are also some differences.
MOKA has a strong link to geometry and geometric modeling: it uses assemblies
and parts explicitly. This thesis does not do this, instead it adopts concepts
of parameters and topological elements. MOKA does not prescribe the knowl-
edge gathering step to determine the system boundaries and acquire the relevant
knowledge. This thesis aims to do so.

MOKA’s scope is wider compared to this thesis: aiming at any engineering
design knowledge. Perhaps due to this wide scope, MOKA handles the solving
algorithm (the Design Process Model) as case specific knowledge. This thesis has
a narrower scope but uses a generic solving algorithm.

2.9 Knowledge Engineering

Knowledge Engineering (KE) is the process to design or develop a computational
model of knowledge. KE involves activities of knowledge acquisition and repre-
sentation [12] [13], both processes that have some distinct challenges.

Knowledge acquisition is the step during KE where design knowledge is made
explicit. Schilstra [38] gives an overview of the development process of Expert
Systems, and identifies several bottlenecks still persisting. These also include
the tacit nature of expert knowledge, the challenges of knowledge extraction and
the difficulty in modeling or representing the rules. In short, the well-known
knowledge acquisition bottleneck [13].

Fensel [14] describes one of these difficulties by observing that design experts
are experts in problem solving, not in explaining their solutions. The knowl-
edge engineer therefore has to obtain thorough understanding of the problem
at hand. Indeed, the book “Fundamentals of Computer Aided-Engineering” by
Raphael and Smith states that the most successful engineering knowledge sys-
tems have been created for situations where the engineer-developers were also
well acquainted with the subject [35].

In general, KE is seen as an activity that requires understanding of both the
computational aspects as well as the design case at hand. The knowledge engineer
has choices to make during the representation of knowledge into rules. For the
design of shape grammars, for instance, the ideal grammar should be compre-
hensive yet model only feasible designs [2]. This involves choices regarding the
amount of rules: many relatively simple ones, or a single complex rule? And the
level of parametrization of the problem: many parameters for good expressive-
ness, or fewer for better computational performance? And how to describe the
dependencies that occur between the rules?

The KE activity is usually done by people who possess the knowledge. This
trend is seen in other research projects as well. The Knowledge Acquisition and
Representation Language (KARL [14]) is aimed at knowledge acquisition from

17

Chapter 2. Literature

the knowledge engineer into a formal language. The MOKA project addresses
the issues how to standardize and model design knowledge consistently, once it is
gathered [27].

Studer et al. [45] reviews the principles and methods of knowledge engineer-
ing research. The modeling activity of expert knowledge includes the process of
acquiring tacit knowledge and make this explicit. When re-usable problem solv-
ing methods are used, the process of knowledge modeling is prescribed using the
generic roles that knowledge can play. This “shell” approach is used for paramet-
ric design tasks. However, the inflexibility of the problem solving method and the
connection to the real-life situations remain a challenge. A proposal is to make a
more flexible, configurable set of problem solvers.

This thesis aims to prescribe the KE activities from design process decom-
position, knowledge acquisition, modeling and implementation. The goal is not
only to make this process more predictable, but also for non-experts to be able to
execute it. A model of synthesis knowledge is used as leading concept to select,
optimize and integrate the most appropriate ingredients from existing domains of
research.

The KE process addresses three major questions:

1. what is relevant: what are the system boundaries;

2. how to acquire the computational model of (synthesis) knowledge (knowl-
edge acquisition);

3. how to automate the computational model: a generative algorithm.

The methods from this thesis aims to answer these three questions, without the
knowledge engineer becoming a design expert him/herself. Ideally, the answers are
stated by the source of the knowledge, during knowledge acquisition. The answers
of the expert are implemented directly, with as little intermediate translation or
modeling by the knowledge engineer as possible.

The modeled knowledge forms the conclusion of design experts: after years of
experience it is finally known what is important and how to generate solutions
efficiently. Using the proposed method, the knowledge is acquired and made
explicit for the organization.

2.10 Previous research

Research projects at the Laboratory of Design, Production and Management of
the University of Twente has been focused on intelligent design support tools for
decades. An example is the FROOM project (acronym for Features and Relations
used in Object Oriented Modeling) that supports the process of re-design, taking
into account the manufacturing and process planning aspects of design decisions
[37]. Interactive features with associated knowledge are used to allow definition
and manipulation of geometry on higher levels than 3D drawing. The designer

18

2.10 Previous research

is informed of the consequences of design decisions in an early stage of design.
Such functionality increases design efficiency and results in higher quality designs.
The research project, of which this thesis is a part, further develops the view of
supporting engineers to “look ahead” to see consequences of their choices and the
limitations of solution spaces.

Recent research projects explore the use of Virtual Reality (VR) during the
design process to include the end-user in the process. Tideman [46] proposed
a method that uses scenarios, VR simulations and gaming principles to support
designers. His method allows the different stakeholders of a design process (such
as end-users, marketing managers, maintenance specialists) to create their own
design and immediately test these in a wide range of scenarios. This proactive
role of the stakeholders aids the designer during the design process.

The added value of VR technology is further explored in the “Synthetic En-
vironments” research project (synthetic with the connotation of “artificial” or
“man-made”). This project aims to provide a virtual prototyping environment
for designers to see and feel (through haptic feedback) the implications of design
decisions. The question how to efficiently develop such an environment for a de-
sign problem is among the core issues of a research project that started in 2005
[28]. My research is similar in the sense that both projects aim to bring a certain
technology to industry.

This thesis is part of the research project “Smart Synthesis Tools” that started
in 2005. The aim of this project is to provide engineering aid through automatic
generation of design solutions. One of the first tools to explore this type of
support is the WATT software for mechanism design [10]. The paper by Draijer
and Kokkeler discusses the seed of the philosophy that led to the “Smart Synthesis
Tools” (SST) project.

Research topics of the SST project address problem structuring, mathematical
techniques, qualitative relations and handling of expert knowledge (this thesis).
More details concerning the SST project are found in [41].

The question that sparked the research is related to the process of design
automation development: it is an unpredictable endeavor and the required effort is
not always in relation to its added value. To conclude this statement scientifically
requires quantification of the development effort for a sufficiently large number of
design problems, in a controlled environment.

Although a number of prototypes are developed at the University of Twente
[40], the scientific rigor is insufficient to draw any firm conclusions. However,
we can use these prototypes to illustrate (in a non-scientific manner) the unpre-
dictable nature of the development process. I estimate the development time for
the software module that performs synthesis, including knowledge acquisition,
algorithm design, implementation and testing. The complexity of the synthesis
module is measured by the number of parameters that a user can optionally spec-
ify as input: the degrees of freedom. The synthesis module has to cope with
changing input specifications and generate solutions that satisfy this input. For
the data points I assume an error margin of 20 to 30%.

19

Chapter 2. Literature

First, the functionality of six prototypes is given, as well as the development
time of the synthesis module (not the complete application). After that, the
development time is plotted against the number of degrees of freedom to illustrate
the apparent lack of correlation.

One of the first prototypes is developed for compression spring design, with
the graphical user interface as depicted in Figure 2.3. The interface shows the
spring in three positions: relaxed, in first compression and second compression
mode. Several input fields are visible where the user can optionally specify several
geometric requirements and spring characteristics, in this case values for F1, F2,
L2 and a maximum value for the external diameter. The synthesis algorithm
generates a list of fully defined springs that meet the specifications, in this case
a total number of 282 springs. Each solution is parametrically fully defined in
terms of material, geometry and usage situation. Knowledge is used from an
engineering handbook [25] and DIN standards. Development of the code that
performs synthesis took roughly 12-16 weeks.

Figure 2.3: compression spring designer

20

2.10 Previous research

Prototypes with similar functionality as the compression spring designer are
developed for spindle-drives, three types of springs and fiber-reinforced compos-
ites. The functionality of these prototypes is discussed briefly.

The spindle-drive designer enables the user to specify a desired motion and
dynamic behavior of a manipulator that is positioned using a spindle-drive, pow-
ered by an electro motor and gear transmission. The software generates several
combinations of electro motor, transmission and spindle. The synthesis algorithm
takes into account the domains of dynamics, electronics and control systems and
took approximately 14-18 weeks to develop.

Three spring designers are developed after the first version of Figure 2.3, for
compression, extension and torsion springs. The development effort of the three
systems was reducing due to the learning effect and re-use of code: approximately
10-14 weeks, 4-6 weeks and 3-5 weeks respectively.

The last prototype is the composite designer, which supports the design of
fiber-reinforced composites. The user can specify which materials are allowed and
information about the orientation and stacking of the plies. Different synthesis
and optimization algorithms were implemented but the first algorithm (full search)
took approximately 2 weeks.

The relation between the development time and number of degrees of freedom
is given in Figure 2.4. The figure illustrates the unpredictable nature of the
development of the synthesis module: no apparent correlation exists between the
development time and the complexity of the problem. Secondly, a development
time of several months only for the design generation module of a mechanical
spring seems out of proportion.

B

C

D
E

A

F

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16

development

�me (weeks)

degrees of freedom

D: extension spring
E: torsion spring
F: fibre reinforced composite

A: spindle drive
B: compression spring (1)
C: compression spring (2)

Figure 2.4: synthesis module development time

21

Chapter 3
Model of synthesis

knowledge

The hypothesis of this thesis speaks of a model of synthesis that is ultimately
intended to be automated. Such automation will simulate an act of synthesis.
This chapter proposes a model of synthesis to describe this activity. The model
consists of three parts: a description of the design artifact, a set of knowledge
rules and an algorithm to combine these two and perform the act of synthesis.

From a cognitive point of view, synthesis can be seen as a construction of
representations [52]. The synthesis phase starts with the design requirements and
elaborates this representation toward the description of a complete design. The
role of knowledge during this activity is not completely clear, but Wittgenstein
used the phrase:

“To know means to know how to go on” (Ludwig Wittgenstein)

An interpretation of Wittgenstein’s view on knowledge is that it enables the owner
to move from some begin to some end. This chapter proposes a description of
synthesis knowledge, based on the view that knowledge enables the owner to take
the next step.

First, a model of the design process is provided to position the activity of
synthesis within the larger context, after which a more in depth discussion on
synthesis follows.

23

Chapter 3. Model of synthesis knowledge

3.1 A model of design

A design process consists of a series of processes that starts with the requirements
and ends with a specification of a design. This section models a design process,
its sub-processes and sub-sets of information. First, the sets of information are
introduced, after which the flow of this information through the sub-processes is
given.

3.1.1 Information

The goal of a design process is to arrive at a description of a “design” that satisfies
certain requirements. Such a design does not necessarily describe geometry or a
physical product, but can also be a layout or sketch. The concept of embodiment
is introduced as the representation of the design artifact or system that is being
designed. An embodiment can be a physical product such as a spring or machine,
but also a control system or network layout. Higher level abstractions of springs
or machines are represented by fewer parameters, but are still embodiments.

Embodiments are not designed to sit on a shelf doing nothing, but to be
used in a certain situation. The description of such a usage situation is called
a scenario. The scenario is information a designer cannot freely change. For
instance, a spring is being deformed and a machine is switched on. A network
layout is subjected to one or more scenarios, such as set of input signals. In case
of the design of a construction beam, a scenario is the load that it has to support,
or the temperature it has to withstand. The designer can change the design of
the beam, but not the force that it will receive. The scenario is typically dictated
from outside the design process, such a customer or previous design process.

After the embodiment and scenario are both known, the quality of the em-
bodiment in that scenario is determined. The performance is the behavior that
an embodiment exhibits in a scenario. For example, a construction beam has in-
ternal material stresses due to the load being applied, and a machine has certain
dynamic performances such as overshoot and error margins.

Figure 3.1 shows an example of an embodiment and performance. The em-
bodiment is a geometric model of a rim. The scenario is a fixed displacement and
the performance is the resulting strain.

Because this thesis focuses on quantitative parametric designs, the embod-
iment, scenario and performance are all described in quantifiable parameters:
information entities that receive a value during the design process. Parameters
can be of different types, such as discrete, continuous, integers, predicates and
sets (e.g. a material with a collection of properties).

In addition to the before mentioned independent types of parameters, a fourth
type is introduced to express extra (dependent) information such as design intent
and temporary construction parameters: auxiliary information. Examples are
ratios, temporary estimates and the number of parts of an assembly. A model

24

3.1 A model of design

embodiment performance

Figure 3.1: embodiment and performance (image courtesy of COMSOL Inc)

can be expanded with a great number of auxiliary parameters, but it is still the
same embodiment.

At the beginning of the design process, a designer is likely to have certain
requirement information concerning certain parameter values. The goal of the
design process is to obtain an embodiment that meets these requirements. Re-
quirements can relate to the embodiment, scenario, auxiliary and performance
information. Examples of embodiment requirements are size and material restric-
tions. Performance requirements state maximum stress peaks or some dynamic
system responses. These can be fixed numbers, maximum or minimum limits or
general optimization goals.

The processes to move from requirements to solutions are discussed in the
following section.

3.1.2 Processes

The design process begins with requirements and ends with a solution, through a
number of smaller processes as modeled in Figure 3.2. The first process is where
an initial embodiment is generated based on the requirements. This phase is
termed “synthesis”. The embodiment description is with sufficient level of detail
to enable analysis, which is the next process: analysis determines the performance
of an embodiment in a given scenario. Analysis can only be executed after an
embodiment is known, and a scenario is given. Analysis methods can vary from
rules of thumb, formulas, Microsoft Excel-sheets, finite element calculations to
dedicated simulation software.

The name synthesis is used to emphasize its opposition to analysis: synthesis
begins with required behavior and ends with a design, while analysis begins with

25

Chapter 3. Model of synthesis knowledge

a design and ends with a specification on behavior.
After analysis comes the evaluation. This process compares the analyzed per-

formance with the requirements and decides what to do with the embodiment
next. Three options exist:

1. an embodiment seems promising, an adjustment is made to it, after which
it re-enters analysis. An automated loop of analysis, evaluation and adjust-
ment results in an optimization process. The optimization method coordi-
nates the embodiment adjustments to steer toward the optimum;

2. an embodiment does not meet the requirements, nor is it expected to. It is
abandoned and synthesis is initiated again;

3. the requirements are met and the embodiment is added to the solution list.

Improving an embodiment involves an adjustment process to modify the embodi-
ment with the goal to better meet the requirements. The difference with synthesis
is that both the embodiment and its performance are known.

requirements

Synthesis

Analysis

Evaluation

Adjustment

embodiment

performance

scenario

solution

1
112

3

Figure 3.2: design process

The synthesis process is considered a core activity in the design process [11]
[47]. Section 3.3 proposes a more detailed description of synthesis knowledge and
Section 3.4 discusses an algorithm for automation.

3.1.3 Levels of abstraction

A design artifact can be represented by embodiments with a lower or higher
expressiveness, known as levels of abstraction [26]. Descriptions with higher ex-
pressiveness take more details into account, and allow for more accurate analysis.

26

3.2 What is synthesis knowledge

Levels of abstractions are seen as levels of expressiveness that are required to
determine performance identifiers.

As an example, Figure 3.3 shows a machine component and a compression
spring on a higher and lower level of abstraction. On the higher level, the rep-
resentations contain fewer expressiveness, while the lower level has is more infor-
mation. The analysis methods of each level take effects into account that allow
for different, more or less accurate analysis. Performance information with high
importance is likely to be checked on higher levels of abstraction, early in the
design process.

initial requirements

design
process

solution +
additional

requirements

design
process

solution

higher level
of abstraction

lower level
of abstraction

...

final product
specification

F

F

F

F

Figure 3.3: levels of abstraction (after [26])

After one sub-set has been addressed, the scope is widened to include the next
(lower) level of abstraction. The solution from a previous level forms part of the
input, together with a new set of requirements. The right-hand side of Figure
3.3 depicts this step-wise refinement from initial requirements to final product
specification.

3.2 What is synthesis knowledge

In a design process, and more specifically the synthesis phase, one could say that
the starting point consists of two things: a set of requirements and a parametric
description of the embodiment that is not yet completely quantified. The end
point is a description of a design that fulfills the requirements. It is knowledge
that enables the designer to go from beginning to end.

The activity of synthesis is the translation of the under-defined input to fully-
defined output. Knowledge rules provide methods to determine values for the
unresolved parameters. These methods can vary from well-informed decisions to
more random guesses.

27

Chapter 3. Model of synthesis knowledge

After a value is determined for a parameter, a check is made to verify if the
process is moving in the right direction. Again, knowledge provides the means to
check if the current set of parameter values is allowed or conflicting. An allowed
combination of values describes a valid (partial) design and the next parameter
value can be resolved. If the values are conflicting, the embodiment description
is invalid. One possibility is go back some steps and try a different route. The
synthesis activity is finished if all parameter values are resolved and without
conflict.

So far, three things are needed to describe synthesis:

1. the modeling entities: parameters;

2. methods to resolve a parameter value, i.e. reduce the dimension of the
problem space: R-rules;

3. methods to limit the allowed solution space: C-rules.

This description of knowledge is labeled PaRC: Parameter, Resolve and Constrain.
A relatively simple algorithm is used to simulate the activity of synthesis. The
algorithm consists of three basic steps:

1. step forward: execute one R-rule;

2. check: execute the C-rules;

3. in case of a conflict, reverse one or several steps and try a different route.

The steps are similar to the Role-Limiting Method [45] and Backtracking from
constraint satisfaction [22], but now explicitly defined in terms of the PaRC model.
A more detailed formulation of PaRC is given in Section 3.3.

Note 1: resulting from these definitions, a difference exists between regular
algebraic equations and R-rules: Expression (3.1) is not synthesis knowledge for
parameters p1 and p2.

p1 + p2 = 1 (3.1)

Equation (3.1) needs translation into either (3.2) or (3.3) before it is used to
“step forward” in the synthesis process. Expressions (3.2) and (3.3) are synthesis
knowledge, because they describe a method to resolve a parameter. Executing
these R-rules results in a step toward the endpoint of the synthesis process.

p1 = 1 − p2 (3.2)

p2 = 1 − p1 (3.3)

28

3.3 A model of synthesis knowledge

Note 2: please note the difference between constraints and constrain (with-
out “t”). In general, constraints are all restrictions and relations a solutions has
to satisfy: both equalities and inequalities. In this thesis I separate equalities and
inequalities. I do this by introducing R-rules and C-rules. The R-rules are used
to model the equalities. C-rules are the relations that limit, restrict or constrain
the allowed values of a parameter: inequalities.

3.3 A model of synthesis knowledge

Synthesis knowledge consists of a parametric embodiment model and a set of
knowledge rules that enable generation of a valid embodiment. Both topics are
discussed in more detail in the following section, and the algorithm that automates
synthesis is discussed afterward [39]. I am aware of the fact that, at some points,
I slightly abuse the formal mathematical notations, but I hope this does not cause
confusion.

First, a general remark about the complexity of design automation is made,
to illustrate the kind of calculations involved.

3.3.1 Challenges

Generating designs is generally an under constrained problem: there are more
unknown parameters than there are equations. Actually, having equations is al-
ready a luxury. Studying design cases from engineering handbooks and industrial
settings shows a mix of linear and non-linear algebraic equations, logic reasoning
and random estimations. These relations can come from scientific formulas or
fuzzy experience knowledge. Choices made earlier can influence what rules to
apply later on. Designs with topological freedom can include or exclude entire
groups of variables and relations. From a mathematical point of view, automating
such a problem in a generic manner is not straight forward.

The parameters that describe a design are a mix of continuous and discontin-
uous, booleans and set-based parameters. For example, the parameter “material”
is composed of a Young’s module, density and melting temperature. One cannot
use an equation to determine a value for the Young’s module: such a material is
not guaranteed to exist.

Another challenge with automating synthesis is the unpredictable input infor-
mation. The user might, or might not, prescribes the value of certain parameters.
And this can change each time the software is used. The algorithm could en-
counter systems of equations, or worse: a system of relations with all the mixed
types described earlier. And in advance one does not know if a solution exists or
not. In any case, the algorithm that performs synthesis has to complete the rest
of the design automatically and find solutions, if they exist.

In summary, automating synthesis is a complex problem. Fortunately, there
is a bright side: humans can do it. A human designer is able to generate solutions

29

Chapter 3. Model of synthesis knowledge

for the problem described above. This might sound trivial, but has an important
consequence for the definition of synthesis knowledge and the algorithm proposed
in Section 3.4.

3.3.2 Embodiment

An embodiment is modeled as a collection of parameters p ∈ P . Parameters
that belong together are grouped within elements e ∈ E, so that the element
“compression spring” is described by parameters such as material, wire thickness
and length. Each parameter within an element is unique.

Each element e ∈ E is an instantiation of an element type t ∈ T . All elements
that are used during synthesis are first defined as an element type. Separate
types exist for cog wheels, levers, springs and so on. During synthesis, multiple
element of the same element type are allowed, e.g. two compression springs in one
machine. Both elements are of the same type (i.e. compression spring) but have
different instances. Although these elements have the same parameters, these
parameters can have different values.

The parameter values of element e are represented by the following vector:

ve(p) p ∈ Pe (3.4)

At creation of the element, the value is unknown. During synthesis, its value
becomes resolved. The notion for the value being unknown or known is denoted
as:

ve(p)

{

= λ if ve(p) is not yet known

6= λ if ve(p) is known
(3.5)

Once a parameter is resolved, its value can be valid or invalid. The C-rules
determine the allowed solution space cp for parameter p. The solution space cp is
formed by the C-rules that apply to parameter p and depend on ve(p) 6= λ, i.e.
all C-rules that can be executed to constrain the solution space.

Section 3.3.3 discusses how these parameters receive their values and how the
solution space is determined.

Topology

A topology of the embodiment resembles the product structure. The topology is
defined as a hierarchical tree of elements e ∈ E, with E ⊂ T . During generation of
a topology, each element e is expanded with a (possibly empty) set of sub-elements
se ⊂ T . The rules that prescribe the addition of sub-elements are termed X-rules.
The X-rule changes the state of the sub-elements, denoted as:

se

{

= λ if se is not yet known

6= λ if se is known
(3.6)

30

3.3 A model of synthesis knowledge

These sets of sub-elements have to respect the normal tree semantics, i.e. no
element can be its own sub-element, neither directly, nor indirectly. Furthermore,
each element has a unique super-element, except for a single root element that
represents the complete design. A (partial) embodiment is thus represented by
the set of elements E, their hierarchical structure s and the parameters values v,
denoted as vector (E, v, s).

Solution

A solution for the synthesis phase is an embodiment that satisfies the following
conditions:

se 6= λ ∀e ∈ E (3.7)

ve(p) 6= λ ∀e ∈ E, p ∈ Pe (3.8)

ve(p) ⊂ cp ∀e ∈ E, p ∈ Pe (3.9)

I.e. the topology is fully expanded (3.7), no parameter value is unresolved for
any element (3.8) and each parameter value lies within the allowed set, for each
element (3.9).

3.3.3 Knowledge rules

The synthesis knowledge is organized using the object-oriented paradigm [4],
where the objects are parameter p ∈ P and element type t ∈ T . This means
that parameters and element types are self sustaining entities, or agents, with
their own knowledge rules. It is important to note that these rules are the same
for every instantiated element e from t, i.e. two compression springs possess the
same knowledge.

The general structure of a knowledge rules is as follows:� object(s): the parameter(s) or element type(s) to operate upon;� conditional set: the set of parameters that is required to have a value before
the rule can be executed;� action: the explicitly described operation on the object(s).

Three types of knowledge rules exist: X-, R- and C-rules. The rules are discussed
in more detail in the following section, each with a pseudo-code example.

Note: as mentioned before, please note the difference between constraints
(with “t”) and constrain (without “t”). In general, constraints are all restrictions
and relations a solutions has to satisfy: both equalities and inequalities. In this
thesis I separate equalities and inequalities. I do this by introducing R-rules and
C-rules. The R-rules are used to model the equalities. C-rules are the relations
that limit, restrict or constrain the allowed values of a parameter: inequalities.

31

Chapter 3. Model of synthesis knowledge

X-rules Xt An element type t ∈ T contains the knowledge to add sub-
elements. X-rules expand the hierarchy of elements by transforming a partial
embodiment (E, v, s) into a new partial embodiment (E′, v′, s′). This is done by
determining the set of sub-elements s′e for an element e ∈ E for which se = λ and
adding these elements to E to form E′. A single X-rule can add multiple types
of elements, or multiple instances of the same element type.

Example An example of an X-rule is the topological expansion of element
E1 with N element instances E2 from element type ET2. In addition, the param-
eter thickness of the sub-elements E2 must have the same value as the parameter
width from E1.

The pseudo-code is executed by the object element E1. The “belief” parameter
(value between 0.0 and 1.0) describes whether or not a rule is executable and with
which certainty.

// CONDITION: E1 not expanded, N is resolved, width is resolved,

if ((E1.IsNotExpanded) &&

(E1.GetParameter(N).IsResolved) &&

(E1.GetParameter(width).IsResolved))

{

// X-rule can be executed

belief = 1.0

}

The action part of the X-rule is:

// ACTION: create N sub-elements

for(i = 1 to N)

{

// instantiate element E2

element E2 = new ET2.Instantiate()

// set specific value for thickness

E2.GetParameter(thickness).Value =

E1.GetParameter(width).Value

// add to E1

E1.Add(E2)

}

R-rules Rt A parameter p ∈ P that belongs to element type t has one or
more knowledge rules to resolve its value. The parameter value of parameter
p for some element e ∈ E is fixed from its state λ in v. The result is a partial
embodiment (E, v, s) that is transformed into a new partial embodiment (E, v′, s)

32

3.3 A model of synthesis knowledge

that has less unresolved parameters. This implies that R-rules can only be applied
to parameters that have not been fixed before.

Example Consider the R-rule from Equation (3.10) to resolve parameter p1,
which belongs to element E1.

p1 = 2 · p2 (3.10)

The condition parts is executed by parameter p1 to check if the rule can be
executed, or not.

// CONDITION

if ((E1.GetParameter(p1).IsNotResolved) &&

(E1.GetParameter(p2).IsResolved))

{

// rule can be executed

belief = 1.0

}

If parameter p1 is selected for resolving, the action part of the R-rule is exe-
cuted.

// ACTION

E1.GetParameter(p1).Value =

2 * E1.GetParameter(p2).Value

Random generator The random generator is a universal R-rule that is ap-
plied if no other R-rule can be executed. The random generator can be used for
many different types of parameters. In case of floating point or integer parame-
ters, it generates a value within the allowed solution space. In case of set-based
parameters such as material, it randomly selects one of the allowed materials.

Only embodiment parameters are allowed to be randomly generated. Embod-
iment parameters represent the degrees of freedom of a design, and exploring the
design possibilities is done by varying the values of embodiment parameters. Ran-
dom generation of performance is not allowed because these must be calculated
by the analysis method. Random generation of scenario parameters is also not
allowed, because it would be meaningless to compare the resulting performances
(i.e. an embodiment has better performance because the scenario is lighter).

Random generation is only used if no other R-rule can be executed. If a
parameter can be calculated by an equation, this has precedence over the random
generator. The R-rule for random generation looks similar to a R-rule, with the
difference that no other parameter values are required to be resolved. Consider
the random generation of a value for parameter p1 within the previous element
E1. The condition part is:

33

Chapter 3. Model of synthesis knowledge

// CONDITION

if ((E1.GetParameter(p1).IsNotResolved)

{

// random generation rule can be executed

belief = 0.1

}

Note the value for belief is 0.1. This signals that it is possible to execute the
rule, but not with the same certainty as the R-rule from Equation (3.10). If no
parameter or element has a rule with belief 1.0, the action part of the random
generation rule could be executed:

// ACTION

// get lowerbound and upperbound of solution space

min = E1.GetParameter(p1).Lowerbound

max = E1.GetParameter(p1).Upperbound

// generate random value between min and max

value = random(min, max)

// resolve parameter

E1.GetParameter(p1).Value = value

C-rules Ct A parameter p ∈ P that belongs to element type t has knowledge
rules to check if its own value lies within the constrained, allowed solution space.
C-rules govern the boundaries of what is feasible within a design problem. It
returns a set of allowed values for a parameter: cp. The parameter checks if the
set has members and, if the parameter has a value, whether or not the values lies
within that allowed set. At any time during the synthesis process, the value of
any assigned parameter must be a member of all sets of allowed values produced
by applicable C-rules.

Example C-rules constrain the allowed solution spaces for parameters. In
case of a parameter with double value (e.g. length, width), the solution space
is defined by a lower bound and upper bound. Because multiple C-rules can
constrain one parameter, only the most constraining upper and lower bound is
relevant. Consider Inequality (3.11) for parameter p1.

p1 ≥ p2 (3.11)

The C-rule can be executed independently of the value for parameter p1. The
condition part for the C-rule is, derived from Inequality (3.11):

34

3.4 Synthesis algorithm

// CONDITION

if ((E1.GetParameter(p2).IsResolved)

{

// rule can be executed

belief = 1.0

}

And the action part is:

// ACTION

// new value for lowerbound

newLowerBound = E1.GetParameter(p2).Value

// is most constraining?

if(newLowerBound > E1.GetParameter(p1).Lowerbound)

{

// TRUE: newLowerBound is most constraining

E1.GetParameter(p1).Lowerbound = newLowerBound

} else

{

// FALSE: newLowerBound is not constraining

// original Lowerbound remains

}

Note 1: the “action” part is not necessarily a deterministic mathematical al-
gorithm; it could also take the form of a fuzzy logic system or external application.
A complete reasoning system can be located in this “action” section.

Note 2: the “belief” concept is just one way to discern between resolving
through equations or with random generation. More tuned use of the belief con-
cept is also possible, e.g. to take into account in how many R-rules a parameter
occurs.

3.4 Synthesis algorithm

A view from cognitive design research is that “design is most appropriately char-
acterized as a construction of representations. The initial representation is formed
by the requirements, and through a series of transformations (e.g. replicate, add,
detail, refine, modify and substitute) develops toward its final form” [52]. The
order in which parts of the representations are modified is described by a strat-
egy. One human design strategy is called the“structured decomposition strategy”,
where the predictable paths from input to output are used during synthesis.

35

Chapter 3. Model of synthesis knowledge

Another strategy is described as opportunistic, where it depends on the cur-
rent state of the design and available knowledge to decide on that moment what to
do. The particular non-systematic character is attributed to the fact that design-
ers, rather than systematically implementing a structured decomposition strategy,
take into consideration the data that they have at the time. This focuses on their
knowledge, the state of their design in progress, their representation of this design
and the information at their disposal [52].

This section describes a synthesis algorithm that executes R- and X-rules
using an opportunistic strategy, based on a design mechanism used by a human
designer. Each step considers the available knowledge rules and current parameter
information to decide what to do. The algorithmic description of this process is
divided into a number of steps, beginning with initialization. The algorithm is
also described in [3] as a constraint satisfaction solver for constraint programming.

Step 0: initialization The algorithm initialization requires a set of element
types T . A single instance is denoted the root element, from which the algorithm
starts. The parameter requirements of an element e are super-imposed on the
knowledge rules when it is instantiated.

These user imposed requirements are (combinations of) rules without a condi-
tional set, i.e. always and immediately executable. Examples are: length = 10.0,
thickness ≤ 5.0, M4 ≤ bolt size ≤ M20, material 6= copper, aluminum, gold.

Loop step 1: constrain check: test if any parameter has a conflict. Ex-
ecute C-rules Ct if the conditional set allows it. After execution of the C-rules,
test for all parameters:

1. solution space not empty: cp 6= Ø ;

2. if ve(p) 6= λ: value lies within allowed set: ve(p) ⊂ cp.

If all tests are passed positively: current embodiment representation is allowed.
If one test is negative: current embodiment is not allowed. When possible, a
previous (allowed) representation (E, v, s) is retrieved to proceed.

Loop step 2: completeness check: check for complete embodiment. Test
for all elements e ∈ E:

1. se 6= λ ∀e ∈ E;

2. ve(p) 6= λ ∀e ∈ E, p ∈ Pt

This checks if (1) the topology is fully expanded, and (2) no parameter value is
unresolved for any element. If these tests are passed, the embodiment (E, v, s) is a
complete representation of the embodiment and the synthesis phase is terminated.

36

3.5 Limitations

Loop step 3: advance partial embodiment: execute one R- or X-rule.
This is done in three phases:

1. explore possibilities;

2. select parameter or element;

3. execute rule.

The first step tests the conditional sets for the R- and X-rules of each parameter
and element, and gathers the possibilities. Second, one parameter or element is
selected to be resolved or expanded. Using the concept of belief, a difference is
made between rules with and without random generation: rules without random
generation have a higher belief (equations before guesses). Selecting which pa-
rameter or element to be resolved can be made with or without a strategy. In the
most basic form, this is a random process.

As the third step, the action of the selected rule is executed, after which the
algorithm continues with loop step 1: constrain check.

Note 1: if backtracking to previous partial embodiments is implemented to
solve C-rule violations, the algorithm effectively implements a non-deterministic
version of depth-first search.

Note 2: no effort is taken to trace the origin of a conflict, because this can be
several R-rules back inside a different element. Given the diversity of parameter
and knowledge rules, as well as the “random walk” of the algorithm, this topic is
reserved for future work.

3.5 Limitations

The PaRC model and the algorithm from Section 3.4 are used to automate syn-
thesis of parametric engineering design, with the following limitations.

3.5.1 Systems of equations

The algorithm does not solve systems of equations. Developing a generic (au-
tonomous) solver for a mix of linear, non-linear, logic relations for continuous and
discontinuous parameters is outside scope of this thesis. However, the presence of
a system of equations is recognized by observing if a parameter can be resolved by
more than one R-rule. This signals that a system is encountered, and the current
embodiment is possibly incorrect and therefore abandoned. An example of this
approach is given.

37

Chapter 3. Model of synthesis knowledge

Consider Equations (3.12) and (3.13) with two free parameters p1 and p2.

p1 + p2 = 2 (3.12)

p1· p2 = 1 (3.13)

These equations must be solved as a system in order to yield the only valid solution
p1 = 1 and p2 = 1. However, the nature of the algorithm is that it resolves one
parameter at a time. At the initial state, neither parameter can be resolved.
The algorithm will randomly generate a value for one of the two parameters:
e.g. p1 = 0.5. Next, the algorithm will explore the possibilities, and finds it can
resolve p2 by R-rules derived from either (3.12) or (3.13). This leads to p2 = 1.5
or p2 = 2, both incorrect.

The erroneous situation is prevented by observing the fact that p2 can be
resolved by more than one R-rule (excluding random generation). If such a situ-
ation is encountered, the entire embodiment is abandoned (the “better safe than
sorry” paradigm is applied). A remedy for this situation is to add an additional
R-rule that recognizes specific systems of equations and solves them explicitly.

If one requires the algorithm to prevent systems of equations, one must state all
parameters of an equation as possible resolve options. Even if no computational
method is included to actually resolve the parameter. This is done because they
could be part of a system, and this situation must be noticed.

3.5.2 Consistency and solvability

The consistency and/or solvability of a PaRC model is not explicitly checked.
Therefore, it is possible to model ambiguous or erroneous situations and run the
algorithm. The algorithm will try to generate embodiments with the given model.

Autonomous analysis of the PaRC model would require the content of the
rules to meet some prescribed (formal) expressiveness. An algorithm would be
executed to detect an over-constrained situation or the lack of any solution. Both
checks would be valuable to execute during the knowledge engineering phase, but
are outside scope of this thesis.

The algorithm from Section 3.4 only detects systems of equations (an over-
constrained problem), but does not solve them. The existence of solutions is
checked by running the algorithm and waiting for a solution.

3.5.3 Revising decisions

The model does not allow revision of earlier made decisions. Parameter values
that have been resolved cannot be changed. Neither can sub-elements be expanded
twice. The reason is that a parameter value could influence decisions made later on
during synthesis. To prevent the risk of a loop, the action of resolving or expansion

38

3.5 Limitations

twice is not allowed. Instead, an “estimation” parameter can be introduced to
estimate a first value, after which another parameter describes the final value.

The consequence of “forward only” generation is also that the topology is
static: after sub-elements are added to an element, no modifications are made.
The random-walk during synthesis creates differences in the topology, but in-
formed adjustments are not made.

Adjusting an embodiment to better meet performance criteria is outside the
scope of this thesis. Recommendations concerning this topic are made in Section
7.2.

3.5.4 Algorithm

The disadvantages of the backtracking algorithm are known [3]. The risk of re-
peated failure due to the same reason and the lack of memory for conflicting values
of parameters are among the main risks of inefficiency. The fact that conflicts are
not detected before they really occurs is another disadvantage. However, its ro-
bustness and the fact it is independent (to certain extent) of the content of the
rules make it an attractive baseline algorithm.

39

Chapter 4
Knowledge engineering

method

This chapter describes a method to decompose and model a design process and
the knowledge in terms of PaRC. The method begins with a design process and
one or more knowledge sources. Modeling a design process requires identifica-
tion and typing of information entities, sub-processes and knowledge rules with
nomenclature from the original source.

The method aims to aid the “what to look for and how to get it”-aspect of
knowledge acquisition. In case of a human source, the knowledge engineer acts as
facilitator to make the expert’s knowledge explicit.

The first step divides a design process into levels of abstraction. After a
suitable level is selected for further modeling, the analysis method is formalized
and used to identify the embodiment and scenario. Subsequent formalization of
the synthesis knowledge leads to a completed PaRC model.

The outline of the method is depicted in Figure 4.1. The individual steps are
elaborated in the following sections.

41

Chapter 4. Knowledge engineering method

Identify levels of abstraction

Selection

Analysis formalization

Synthesis formalization

design process

processes / information,

divided in levels of abstraction

1 level of abstraction

embodiment and scenario

PaRC model

1.

2.

3.

4.

Figure 4.1: knowledge engineering

42

4.1 Step 1: identify levels of abstraction

4.1 Step 1: identify levels of abstraction

The first step to find the levels of abstraction is the identification of the perfor-
mance parameters. Levels of abstraction emerge as performance parameters of
equal importance.

The performance parameters are found by asking an expert to describe the
quality of a design, or what parameters decide the quality? Give a design to an
expert and ask how “good” it is: what aspects does he/she consider? Give two
different designs to an expert, and ask which design is the better one: again, what
aspects are considered? What information decides if a design is not approved?

These questions are asked at several moments during the design process. The
goal is to obtain a list of performance identifiers. Examples are cost, weight, max-
imum stress, optimal speed, first eigenfrequency, dynamic response and stability.

After the performance parameters are known, identify levels of abstraction
by grouping the performance indicators of equal importance and their analysis
methods. Performances of higher importance are identified early on in the design
process: on higher levels of abstraction. Performances of equal importance belong
in the same level. When multiple levels exists, rank these relatively to each other.
To complete the division of a design process into distinct levels of abstraction,
state what the input and output information is for each level.

4.2 Step 2: selection

It is possible that the design process is traced from first conceptual design all
the way to detailed design for manufacturing. Many levels of abstraction are
identified, some of which are not suitable for modeling with PaRC. This step
selects the parts that are suitable, using the following check:

1. the analysis methods are known;

2. the degrees of freedom are known and a knowledge source is available (i.e.
the problem is well-structured);

3. the design process can be described with parametric information and quan-
tifiable data.

It is advisable to select entire levels of abstraction to maintain coherence of
the decision making process. If a group of performance parameters is taken into
account to make a decision, these parameters should be of equal importance and
provide a complete image of the quality of a design.

43

Chapter 4. Knowledge engineering method

4.3 Step 3: analysis formalization

A design process is selected for further formalization. The current step involves the
formalization of the analysis methods that quantify the performance parameters.
This is done by asking “how” these performance parameters are calculated: the
analysis method.

If an explicit method is used, describe the input and output information as
parametrically as possible. After all parameters are identified, begin typing each
as embodiment, scenario, auxiliary or performance. To decide which type a pa-
rameter is, the following decision scheme is suggested:

1. embodiment: parameters and/or topological structures that a designer is
allowed to manipulate;

2. scenario: description of a usage situation, often prescribed by external par-
ties or a previous level of abstraction. A designer is not allowed to freely
manipulate these parameters;

3. auxiliary: can be substituted by either only scenario, or only embodiment.
Auxiliary parameters are the dependent parameters, while embodiment and
scenario are independent;

4. performance: calculated by a combination of embodiment and scenario.

This decision scheme is intended as a guideline. It should always be used in
combination with the intended common sense understanding of embodiment, sce-
nario and performance: an embodiment is the designed artifact or system, and
scenarios are imposed from “outside”. Performance comes from combining an
embodiment and scenario, and states something about the quality of a design.
Auxiliary parameters are used to rewrite other parameters, or give some addi-
tional information. These can be substituted without changing the “core” of the
design process.

After all parameter have been typed, the embodiment descriptions from mul-
tiple analysis methods are combined to give a complete embodiment on a single
layer of abstraction.

It is not obliged to “keep” all parameters, as some can be eliminated by sub-
stitution. All embodiment and scenario parameters are kept and only the major
auxiliary parameters. Including more or less parameters creates a trade-off be-
tween the expressiveness of the model and the (computational) complexity.

Analysis methods occur in a number of different ways. Section 4.3.1 discusses
several differences between simulation, formula and tacit analysis methods and
how to cope with them during decomposition.

Note: during the identification process of these parameters, be careful not
to focus too much on a single exercise: an embodiment requirement (e.g. length
= 10) can be mistaken for a scenario parameter. Vice versa, a scenario can be

44

4.3 Step 3: analysis formalization

mistaken for a degree of freedom: how much load can this bridge take? When
modeling a design process by focusing on a single exercise, there is the risk of
extrapolating the exercise to the entire process. During one exercise, an expert
is likely to organize his/her activities in such a way that the expected difficulties
are addressed properly. However, the next exercise might have other difficulties,
making the expert change him/her strategy. And the next exercise could change
again.

4.3.1 Differences in analysis methods

As discussed previously, an analysis method calculates a performance parameter
based on an embodiment and scenario. Three common types of analysis methods
are discussed in this section.

Simulation

Simulations are used to reveal performance issues that are hard, or impossible,
to quantify analytically. Finite element analysis is a popular example of such
simulations, such as the crank shaft depicted in Figure 1.2a.

Before a simulation is executed, the embodiment model has to be defined.
This can be an abstracted representation, such as two-dimensional wire frame
model to represent a bridge, or a detailed three-dimensional model of the same
bridge. The scenario can be a static or dynamic load case: a frequency sweep to
reveal eigenfrequencies, or simply gravity to see if a structure fails under its own
weight.

The crank shaft of Figure 1.2a shows a simulation of the material stresses
under mechanical and thermal load. Whatever embodiment the designers come
up with, these are analyzed under the same load and temperature scenario.

The model of the crank shaft is in this example the embodiment and the load
and temperature the scenario. All of these parameters have to be specified before
a simulation is ran to reveal the material stresses. An analysis simulation cannot
be inverted to determine an embodiment parameter.

Formula

Formulas can occur in parametric design problems during all sub-processes. After
the performance parameters have been identified, their means of quantification
are the analysis methods, which have the general layout of Equation (4.1).

< performance >= f(embodiment, scenario) (4.1)

For instance, the design of a spring element. The design goal is to exhibit a
specific force upon a fixed displacement, using Equation (4.2) to calculate force

45

Chapter 4. Knowledge engineering method

F if a displacement s is imposed on an artifact with stiffness k. The parameter
types are: F is performance, k is embodiment and s is the scenario.

F = k · s (4.2)

However, Equation (4.2) can also be used to calculate the parameters k and
s. A characteristic of algebraic equations is that they can be re-written and used
whichever way is most convenient. But the use of an equation does not change
the fact that it is an analysis formula to calculate performance.

Tacit

Experts often do not use calculations or simulations to judge the quality of a
design. Instead, it is done with an “expert’s eye” to intuitively decide to proceed,
abort or adjust a design.

Judging the aesthetics of a house requires the object to be described in terms of
colors, shapes and positions. These specifications are not required for each screw
and door-knob, but only the roof, windows and walls. The people to purchase the
house require a certain style, and the aesthetics are judged in this context.

Although this analysis method is hard to make explicit, it can still be used to
describe and model the design process, albeit perhaps not as parametrically as a
formula.

Differences between simulation, formulas and tacit analysis

The differences between simulation, formula and tacit analysis method are illus-
trated in Figure 4.2. To use these methods as decomposition instruments requires
their input and output sets of information to be explicit. Identifying these sets is
done differently for the three types of analysis methods.

embodiment

scenario

performance

simulation

embodiment

scenario

performance

formula

embodiment

scenario

performance

intuition

(a) simulation (b) formula (c) tacit

Figure 4.2: three types of analysis

Simulation-analysis has a clear relation between the input and output: the
input has to be defined, after which a simulation is ran to reveal the performance.

46

4.4 Step 4: synthesis formalization

This is used directly to distinct between the performance information and scenario
and embodiment information.

Formulas are explicit input-output relations, with the added difficulty that
formulas can be re-written algebraically, so what is the input and what is the out-
put? For example, Equation (4.3) can be written as (4.4), (4.5) and (4.6). From
observation of the equations, it is not clear which one is the analysis expression
that is needed for analysis-oriented decomposition.

The analysis expression is the one which is an explicit description of a per-
formance parameter (see Expression (4.1)). The left-hand side states the perfor-
mance and the right-hand side contains the scenario and embodiment. It depends
on the design context which performance is relevant and which expression is the
appropriate analysis formula.

p1 + p2 + p3 = 0 (4.3)

p1 = −p2 − p3 (4.4)

p2 = −p1 − p3 (4.5)

p3 = −p1 − p2 (4.6)

Tacit analysis methods lack explicit input-output relations. However, the in-
formation can be divided into the three types. Once the performance information
is known, one asks “how” this is determined. The answer from the expert contains
the scenario and embodiment information. Similar to formulas, the goal is to ob-
tain a description of “performance is determined by . . . ”, where the right-hand
side contains scenario and embodiment information.

4.4 Step 4: synthesis formalization

This phase uses the previously found parameters of the embodiment to acquire
and model the knowledge rules for synthesis. The embodiment parameters are
the starting points to state the R-, C-rules and finally the elements and X-rules.

If the knowledge source mentions other parameters during knowledge acqui-
sition, these can be added to the group and included in the acquisition process.
Each parameter is made explicit with a name, short description and type (em-
bodiment, scenario, performance or auxiliary), such as stated in Table 4.1. The
table contains part of the embodiment of an industrial design case, discussed in
more detail in Section 6.2.1

47

Chapter 4. Knowledge engineering method

Table 4.1: optical chamber, parameters (partial)

type name description

scenario Smat sample material
TA tube surface area
Tmat tube material
DetA detector surface area

embodiment Tx tube position, x
Ty tube position, y
Dmat diaphragm material
... ...

auxiliary OCβP angle primary axis
OCLP length primary axis
Emax maximum energy
... ...

The knowledge acquisition activity is one where questions are asked and an-
swers formulated. The questions should lead to useful answers. The following
section provides more detail how to acquire the relevant knowledge.

R-rule To obtain the R-rules for an object, specific answers are searched for:
the condition statement and the action procedure (discussed in Section 3.3.3).

The general form of a R-rule for a parameter is:

if(<condition>)

{

<parameter value> = <action>

}

The condition and action statements are acquired by formulating an explicit
answer to the following questions:

1. condition: when can you calculate a value for this parameter?

2. action: how do you calculate the parameter value?

Example Expression (4.7) shows the action part of the R-rule to calculate
the x-coordinate of the tube (embodiment parameter Tx), Figure 4.3.

The action part of the R-rule to choose a diaphragm material is given in
Expression (4.8). This rule selects material A if the value for Emax exceeds value
V, else material B is selected.

48

4.4 Step 4: synthesis formalization

A parameter value can also be randomly selected between an upper and lower
bound. For instance, the parameter OCβP is randomly resolved between A and
B, Expression (4.9). The user has certain default values for A and B, or these
values follow from other calculations.

Tx = OC(x) − OCLP · cos(OCβP) (4.7)

Dmat = if(Emax > V) (4.8)

{Dmat = A}
else{Dmat = B}

OCβP = random(A, B) (4.9)

L

ß

(x, y)

Tx

x

y

Figure 4.3: tube position

If there are exceptions or fuzzy decisions, these can be included in the rule.
Multiple R-rules are stated if a parameter can be resolved in more than one way.

The condition part tells when a rule can be executed: what information must
be known? This follows from the content of the action part: all information that
is mentioned must be known before it is used.

C-rule The C-rules are found by inquiring, for each parameter, if the value
is always good and never needs validation. If it is checked somewhere during the
synthesis phase, this signals the existence of one or more C-rule. Again, ask how
and when this is done. The general form of a C-rule for a parameter is:

if(<condition>)

{

<parameter value> is valid if: <action>

}

The condition and action statements are acquired by formulating an explicit
answer to the following questions:

1. condition: when can you check the validity?

2. action: how do you check validity?

49

Chapter 4. Knowledge engineering method

Example An example of a C-rule is the check if a value exceeds a certain
minimum ratio: Expression (4.10) must be valid. This yields the action parts of
C-rules (4.10),(4.11) and (4.12), for parameters a, b and c respectively. Either
one of these three C-rules is sufficient to detect invalid embodiments, but for
completeness all three are stated.

a ≥ b

c
(4.10)

b ≤ a · c (4.11)

c ≥ b

a
(4.12)

An example of a non-algebraic C-rule for parameter “material” is when certain
materials are excluded for specific environments. The condition of the C-rule is
true if the environment is known. The action part will exclude all materials from
a database that are sensitive to corrosion. The materials have a boolean to signal
if they belong to the allowed set and this boolean can be made “false” by the
C-rule, for example as shown in the following pseudo-code:

\\ CONDITION

if(E1.GetParameter(environment).IsResolved)

{

\\ rule can be executed

belief = 1.0

}

\\ ACTION

if(E1.GetParameter(environment).Value == corrosive)

{

\\ exclude sensitive materials

foreach(material in database)

{

if(material.CorrosionSensitive)

{

material.IsAllowed == false

}

}

}

Element types Element types are groups of parameters that are addressed
simultaneously. The question at this point is: what parameters belong together?

The product that is being design can be used to determine the element types
as physical entities, such as springs, belt drives, x-ray tube and detector.

Element types can also be defined according to different functions they perform
in a design. For example, an optical chamber (Section 6.2.1) has two diaphragm

50

4.4 Step 4: synthesis formalization

sets: one between tube and sample, and the other between sample and detector.
Both sides have different functions and are modeled as different element types.
The tube side must radiate the sample surface homogeneously, while the detec-
tor side must focus on the center part of the sample. Both sides position their
diaphragms differently. Instances of the element type “diaphragm” will occur as
sub-elements on both the tube and detector side.

The Vanderlande Industries case (Section 6.2.2) has element types specifically
to model product functions such as check-in, screening and sorting. Each of these
main functions is a different element type, and within the main function are
element types for specific sub-functions, Figure 4.4. For example, the function
to gather incoming baggage flows, to redistribute the flow and make it evenly
distributed, to feed baggage in and out of the processing equipment and to present
it to the following sub-system. The element “belt” is used inside each functional
element, but connected differently each time. Different element types are made
for different functions, and each function places its belts with specific knowledge.

Main function

Gather input Redistribute Process Output

Belt Belt Belt Belt BeltEq.

Figure 4.4: element types for functions

X-rule X-rules are revealed as the process that is executed to expand the
topology of the embodiment with new elements. Once the element types are
identified, the X-rules are formulated to add them.

An X-rule is executed when sufficient information is known to connect the
sub-element(s) to existing parameters. After the expansion, each element will be
self-supporting but must “know” its place within the topology. The layout of an
X-rule is:

if (<condition>)

{

\\ 1. create sub-element instances

\\ 2. connect to existing embodiment

\\ 3. add to element

}

The condition statement of the X-rule must check for the required informa-
tion to connect the sub-elements to the embodiment. Formulation of the X-rules
depends on the chosen element types.

51

Chapter 4. Knowledge engineering method

Note 1: knowledge rules can refer back to performance or scenario param-
eters. For instance, a performance requirement is stated at the beginning and
influences decisions during synthesis. If such parameters are mentioned during
synthesis, these are included in the knowledge acquisition process.

Note 2: the parameters are revisited several times, to make sure no R- or
C-rules are left out. Existing knowledge acquisition techniques are used to make
this process as efficient as possible.

Parameter dependency graph Synthesis knowledge is explicitly written
as PaRC entities, but can also be graphically presented to visualize the parameter
dependencies. Directed graphs are used to represent the network of parameters
and R-rules. Parameter dependency graphs are used to observe more intuitively
“what knowledge looks like”.

A parameter dependency graph consists of nodes and directed edges. Nodes
represent parameters and the directed edges describe R-rules. The direction of
the edges are pointed toward the target object: the parameter to resolve. If node
D has N edges directed toward it, this represents a R-rule for node D that requires
the N other values.

An example of such a parameter dependency graph is shown in Figure 4.5.
This graph represents the R-rules derived from Equation 4.13, which comes from
a compression spring. The equation describes the winding ratio w as a fraction
of the spring diameter D and the wire diameter dwire.

w =
D

dwire

(4.13)

Figure 4.5: parameter dependency graph, example

Node w has two edges directed toward it, meaning that its value can be re-
solved if the values of D and dwire are known. As shown in Figure 4.5, the
parameter value of dwire has no edges toward it. This means dwire cannot be
resolved with this equation. The reason is that the allowed values of dwire are

52

4.5 The knowledge document

discontinuous (specified by a DIN standard), and a calculated value from an equa-
tion is not guaranteed to be exactly a DIN value. Instead, dwire is resolved by
another rule, or random generator, before Equation 4.13 can be used to resolve
either w or D.

Note 1: The graphs are made using Graphviz win 2.16. The layout algo-
rithm automatically aims edges in the same direction (top to bottom, or left to
right) and then attempts to avoid edge crossings and reduce edge length (the so-
called dot setting). Further analysis of these graphs is outside the scope of this
thesis: it is only intended as a graphical representation of knowledge.

Note 2: The random generation rule is not taken into account. Parameters
that do not occur in any R-rule are also not depicted.

4.5 The knowledge document

The result of the knowledge engineering phase is a model of the design process
and synthesis knowledge that is described explicitly in a knowledge document.
The model of the design process states the information flow through the different
sub-processes and the synthesis knowledge describes the knowledge is relevant for
synthesis. The latter is specified in PaRC entities of parameters, element types,
X-, R- and C-rules.

The models within the knowledge document are not dependent of any single
design exercise. The analysis method is used as guideline to determine the ex-
pressiveness of the models, not the expert nor knowledge engineer. The goal is to
retrieve a static, reliable model of the design process.

The document contains the knowledge as far as relevant to execute the design
process and synthesis. No explanations, causal relationships or new knowledge
is included. However, these aspects can be added by using the PaRC model as
starting point and gathering more data.

The knowledge document contains valuable expert knowledge that can be
stored or used for training purposes. However, the models can also be used to
develop design automation software. The following chapter will discuss the process
of developing the software application.

4.6 Limitations

The knowledge engineering method is developed for engineering design with ex-
isting knowledge, parametric information and quantitative data. Modeling the
parameters and their R- and C-rules is relatively strictly prescribed. The model
can be modified to the taste of the knowledge engineer, but a first model is made
quite quickly. At least, that is the experience of the author.

53

Chapter 4. Knowledge engineering method

The scope further includes designs with topological degrees of freedom, such as
assemblies and product systems. However, modeling topological entities requires
more “personal creativity” of the knowledge engineer. These decisions are less
strictly prescribed and therefor lead to more ad hoc modeling solutions. Although
it is certainly possible to model designs such as transport networks, the goal of
the method is to eliminate the ad hoc approach. The method is most suitable for
parametric engineering with fewer topological degrees of freedom.

54

Chapter 5
Software development

method

The development process of design automation software is prescribed for design
cases that are unfamiliar to the development team. Guidelines are given about
procedure, as well as several approaches for efficient software development. The
previously described knowledge engineering method forms a substantial part of
the process and is positioned relative to the other activities.

The software development process consists of steps depicted in Figure 5.1:
the first step creates an overview of the major processes and products within
the new company. Next, a section is selected for further study and model the
design process using methods from Chapter 4. The PaRC model is subsequently
automated and the user interaction is determined.

The steps are described in more detail in the following sections. Diverging
from this plan is of course allowed, but being aware of a procedure or information
structure is a great benefit during software development, as concluded from the
development of several prototypes [40].

55

Chapter 5. Software development method

Overview

Selection

Modeling (Chapter 4)

Automation

company

flowchart processes / products

1 design process

PaRC model

automatic synthesis

1.

2.

3.

4.

User interaction

design automation software

5.

Figure 5.1: software development

56

5.1 Step 1: overview

5.1 Step 1: overview

The first step is to create an overview of the company and check for suitable
design processes, getting to know the unfamiliar design environment, individuals
and nomenclature. This phase has no strict procedure, as it depends greatly
on the specific situation. The general goal is to create an overview of context
surrounding the design of the product(s). Especially the input/output interfaces
between departments, processes and activities are of interest.

A suggestion is to begin with a product family tree and process flowcharts from
initial requirements to final product specifications. State the activities and sets
of information as they evolve from beginning to end. Where possible, specify the
design processes with respect to e.g. disciplines (physics, mechanical), components
or level of detail. Different departments and/or expert designers might embody
an isolated (part of a) process, as are chapters and sections in literature sources.

The output of this phase is an overview of the different (design) processes, rel-
ative to each other. The information is specified in the company’s nomenclature.
An overview can encompass multiple design processes and levels of abstraction
from conceptual systems design to manufacturing planning.

5.2 Step 2: selection

Suitable design processes for software development are identified, using a suitabil-
ity check that is similar to Section 4.2. In addition, the check here also takes into
account the ability to be automated. Design processes are required to meet the
following conditions:

1. the analysis methods automatically quantify a set of performance parame-
ters;

2. (identical to Section 4.2) the degrees of freedom are known and a knowledge
source is available (i.e. the problem is well-structured);

3. (identical to Section 4.2) the design process can be described with paramet-
ric information and quantifiable data.

5.3 Step 3: modeling

Developing a model of the selected design process and synthesis knowledge is done
using the knowledge engineering method described in Chapter 4. First, levels
of abstraction within the design process are identified, and the most suitable
one selected. The information around the analysis methods describes the core
expressiveness of the software.

Once the parameters around the analysis method are made explicit, a model
of the design process is made. The content of the information sets of performance,

57

Chapter 5. Software development method

scenario and embodiment are known. This also determines the functionality of
the software modules for synthesis and analysis.

5.4 Step 4: automation and implementation

Automating the models obtained from the previous step involves choosing the
right algorithm for the problem. If the synthesis knowledge is modeled in PaRC,
the algorithm from Section 3.4 can be used. Automation of the remaining pro-
cesses is very case dependent, but at least the input/output information is explic-
itly known.

The sub-processes and the information exchange between them is managed
by a higher level framework: the architecture. The approach of this thesis is to
build a specific software program for a specific design case. When building the
next program, a certain amount of code is re-used, effectively reducing software
development effort. The code being re-used in multiple software programs is
the generic code, and the code that contains the design specific information and
knowledge is the specific part. This notion led to the development of a generic
software architecture, discussed briefly here but details are provided in [48].

A generic architecture defines the interfaces between generic and specific code,
on a module level. Modules are larger building blocks of a system with a clear
task. They provide a separation between interface and implementation compo-
nents. The interface describes functions and data abstractions available to the
world surrounding the module. It expresses the components that are provided
and required by the module. The implementation encompasses the code that
takes care of the tasks to be performed, internally. A module for visualization for
instance, “talks” about geometric surfaces and colors; whereas a module for syn-
thesis has interface components like parameters and R-rules. In modern program-
ming languages like C#, modules can have multiple explicitly defined interfaces.
A visualization module for instance can provide both a 2D and 3D interface.

If these generic sections are used from existing software, such as a CAD system,
the specific parts act as plug-ins. The interface between generic and specific is in
that case defined by the Application Programming Interface (API). The research
project in which this thesis is executed developed its own generic architecture
in the C#.NET environment. The architecture resembles the model of a design
process and the interfaces between software modules are defined according to the
information sets between different activities in the design process, discussed in
Section 3.

The main paradigms of generic architecture development are summarized:� modularity;� centralized data model;� separation of generic and specific code and data.

58

5.5 step 5: user interaction

The generic architecture prescribes the standardized interfaces of modules.
This enables other module versions with new internal implementations to be
plugged-in. This enhances the tool building process where multiple developers
work on the same system or where a customized version of a module is needed.
The generic modules have generic implementations and generic interfaces. The
specific modules have specific implementations and can have both generic and
specific interfaces. This makes it possible to embed specific modules in a generic
environment.

The generic part encompasses the libraries to support and manage data stor-
age, gathering the user input, and presenting the output of the synthesis process
back to the user. The specific code that is connected to the generic part includes
modules that describe the different steps of a specific design case.

Chapter 6 discusses an implementation of the generic framework.

5.5 step 5: user interaction

The final step in software development is to decide the interaction between soft-
ware and user. The graphical user interface (GUI) between user and software
is the place to state the design requirements and observe what the program has
done. Although the graphical appearance of this interface changes per case, the
functionality is described using the prototype software for belt drive design.

Requirements input The requirements are entered using the interface de-
picted in Figure 5.2. The panel at the left-hand side of the GUI contains the
Project Explorer that displays the design history, similar to the Windows Ex-
plorer. When the user tries different sets of requirements, new sessions are cre-
ated within a project. Each session contains a requirement set, and a solutions set
containing the results of multiple synthesis runs. The requirement node has three
sub-nodes to provide direct access to the embodiment, scenario and performance
requirements. Clicking the requirement node or the solution node will cause the
program to switch to the corresponding graphics at the right-hand side of the
GUI.

Below the Project Explorer is the “parameter input” window. This window
contains fields to specify values for the parameters. The user can set the require-
ment type (e.g. equal to, less than, greater than, between) and provide a value or
range. He/she can also leave the parameter free to be determined by the synthesis
process, allowing a degree of freedom in the synthesis process. Located in GUI are
some parameter buttons with the name of the parameter indicated in the sketch.
The user can double-click these buttons and change the value of the parameter in
a pop-up dialog, shown on the left bottom where requirements of d1, i and e are
entered.

59

Chapter 5. Software development method

Figure 5.2: requirements input, belt drive case

60

5.5 step 5: user interaction

Solutions presentation In the Solutions view, the user is presented with the
solutions for a design problem, by means of a 2D plot or a list. A sketch of an in-
dividual solution can be included at the right-hand side. A list of all embodiments
is visible and connected to the dots in the diagram. Each dot is an embodiment
that can be given a color. In this example, different colors represent different belt
materials. Both diagram axes can handle all parameters, simply by selecting them
from a drop-down box (currently it depicts “optimal belt speed” vs. “pre-load on
axis”).

Figure 5.3: solutions representation, belt drive case

61

Chapter 6
Implementation and

realization

The knowledge engineering method of Chapter 4 and the software development
method of Chapter 5 are applied to two groups of cases: tacit industrial and
explicitly documented.

Two tacit industrial cases are done in cooperation with two companies from
Dutch industry. The first case discusses the software development for a product
component. The second case concerns the layout design of a transport network.
Both cases did not have explicitly documented knowledge before hand.

The second group of cases are machine elements with explicitly documented
knowledge. Prototypes are developed to demonstrate PaRC for more familiar
designs.

The generic software framework as described in Section 5.4 is developed in
C#.NET, with the functionality of the graphical user interface, synthesis and
analysis. The software architecture and several class diagrams are briefly discussed
to shed some light on the implementation of the software. The prototypes are
developed using the generic framework.

6.1 Architecture

The software architecture is developed with the paradigms as discussed in Section
5.4. The central data storage and separation of the synthesis and analysis module
are the most visible properties of the architecture, depicted in Figure 6.1. The
case specific software modules are the PaRC model, analysis module and some
graphics in the user interface.

The user interacts with the software through an input and output interface.
The input module gathers the requirements and sends this to a central data

63

Chapter 6. Implementation and realization

storage module. The central data storage handles the data administration and
coordinates the activities. The synthesis module receives the requirements as
input to generate an embodiment. The algorithm communicates with a PaRC
model through a generic interface. A case specific analysis method calculates the
performance parameters, again through a generic interface.

Input Output

Central data storage

Synthesis

PaRC model Analysis

requirements

requirements

embodiment

+ performance

embodiment

embodiment

+ scenario
peformance

<interface> <interface>

generic

case specific

User
case specific

(graphics)

Figure 6.1: architecture

The central data storage has a class structure where a design project is divided
in multiple sessions, Figure 6.2. Each session is a design problem that begins with
requirements and receives multiple embodiments. The requirements are specified
for element types, which means that element instances of the same element type
have identical requirements.

The synthesis module contains classes to store the generation process and
the end result, Figure 6.3. A single root element is the starting point of an
embodiment. An embodiment can contain multiple elements, each of which has
its own solution state to store the parameter values. The element tree grows as
the synthesis process advances. Each expansion of the embodiment is stored as
transaction, being either an element expansion or parameter resolve action. The
backtracking activity, coordinated from the algorithm, uses the transactions to
reverse the synthesis process.

PaRC models contain element types, which in turn consist of parameters and
knowledge rules, Figure 6.4. The knowledge rules are divided in X-, R- and C-
rules. Parameters are described by a type, a value and a solution space. The
type (e.g. embodiment) is defined during knowledge engineering, the value and
solution space can be user defined (requirements) or generated during synthesis.

64

6.1 Architecture

project session requirements

performance

1 1 1

n

1

1n
element type

n

Central data

storage

1

1

candidate

solution

1

1
embodiment

1

scenario
1

Figure 6.2: central data storage, class model

n
Synthesis parameterelement

transaction
parameter

resolved

element

expanded

<link>

<link>

1 1 1 1

1

1

1

n

n

1

1

1

1

solution stateroot element
n

Figure 6.3: synthesis module, class model

value

solution space

1 1

1

type

1

element type
1 n

parameter

X-rule

R-rule

C-rule

n

n

n

PaRC model
n1

Figure 6.4: PaRC model, class model

65

Chapter 6. Implementation and realization

An implementation example of a knowledge base is given in Figure 6.5. The
code illustrates how an element type (in this case the OpticalChamber) is defined
in terms of parameters and knowledge rules.

The complete implementation contains 100+ classes with derivatives and over-
ridden methods. The generic software is constantly being modified to test new
algorithms. Detailed discussion of the class structures or activity diagrams is
outside scope of this thesis.

66

6.1 Architecture

Figure 6.5: implementation example

67

Chapter 6. Implementation and realization

6.2 Industrial cases

This section discusses two industrial cases: a product component and a network
layout.

6.2.1 Optical chamber of an XRF spectrometer

This case is done together with PANalytical and deals with the design of an optical
chamber of an x-ray spectrometer. The order of steps from Chapter 5 is followed.

Overview and selection

PANalytical is a high-tech company in The Netherlands that designs and manu-
factures, among others, x-ray fluorescence spectrometers (Figure 6.6(a)). These
instruments are used to determine the chemical composition of materials. The
working principle is that of x-ray fluorescence: high-energy x-ray is radiated on
a sample material, causing element-characteristic photons to be expelled. These
photons are collected by a (solid state) energy dispersive detector and used to
determine the chemical composition of the sample, both qualitatively and quan-
titatively. Wide applications in industry and research are a result of the ability
to analyze materials accurately and reproducibly.

The case focuses on the optical chamber of the so-called 2 Dimensional, Energy
Dispersive X-Ray Fluorescence (2D EDS XRF) instrument. This case is chosen
because of the well-known nature of the physics knowledge and the relative novelty
of the product range. A product tree with module specifications is made and
revealed that this type of optical chamber is exclusively designed for this type of
product.

Figure 6.6(a) shows the instrument with twelve cups in the carousel, each con-
taining a different sample material. The measurement is executed by position-
ing a cup above the optical chamber that radiates the sample from underneath.
The main components of the optical chamber are schematically depicted in Fig-
ure 6.6(b): the x-ray tube radiates the sample, causing fluorescence inside the
material. This radiation enters the detector, after which digital data processing
constructs the chemical composition. Diaphragms are inserted to control the path
of the radiation, and an impenetrable casing encloses the components to shield
the environment (and operator).

The components should be positioned in such a way that the tube radiates
the sample brightly, and the detector “sees” only the radiated section of the sam-
ple. Unfortunately, the diaphragms and casing cause unwanted fluorescence and
reflections that also enter the detector and negatively influences the measurement
quality.

68

6.2 Industrial cases

sample

detector

diaphragmx-ray tube

casing

(a) (b)

Figure 6.6: spectrometer and optical chamber (copyright PANalytical BV)

Modeling

A model of the optical chamber design process is made, using the method from
Chapter 4. The steps are described explicitly to demonstrate the implementation
of the method.

Levels of abstraction The performance of the optical chamber is specified
in terms of its price, size and measurement quality. The measurement quality
is determined by two performance parameters of equal importance: signal-to-
background ratio and sensitivity. Signal-to-background ratio describes the rela-
tive amount of sample radiation that the detector receives, and the sensitivity
represents the absolute amount.

The performance parameter of measurement quality is located at one level of
abstraction. A higher and a lower level of abstraction are identified, organized as
follows:

1. system design: determines the product specification and functional require-
ments for the sub-systems. For the optical chamber this means minimum
values for signal-to-background ratio and sensitivity;

2. sub-system design, i.e. the optical chamber: determines the geometry, posi-
tions and orientations of the main components, from a physics perspective;

3. mechanical design: integrates the optical chamber design with several other
sub-systems and prepares the design for manufacturing.

Selection System design and mechanical design lack a predictable and quan-
titative design process and suitable analysis methods. The sub-system level has
suitable analysis knowledge, is fairly predictable and parametric in nature and
has an available knowledge source. The design process is mainly the domain of
one expertise with over 50 years of combined experience in the field of physics.

69

Chapter 6. Implementation and realization

The design process consists, for a significant part, of trying new configurations
and improving these until the performance is satisfactory.

The design process of the optical chamber on sub-system level is selected for
further modeling.

Analysis formalization As discussed previously, the relevant performance
of the optical chamber is mainly specified in terms of signal-to-background ratio
and sensitivity.

The performance of a particular design is determined by an expert’s eye and
several analytical estimations. Little simulation analysis is used during the design
process, so the analysis method is a relatively tacit one. Ray tracing software is
available, but the required calculation time makes this unsuitable to use during
the early phases of the design process.

Studying the analysis method and discussion with the expert reveals two levels
of detail as far as physics is concerned. The dominant effects of absorption, reflec-
tion and fluorescence are of primary importance, while energy shifts, polarization
and penetration depth are of secondary.

A finite element analysis method is developed based on these assumptions to
simulate an expert’s judgment of the quality of a design. The formalization (and
automation) of the analysis method leads to the identification of the embodi-
ment parameters. The scenario is determined on the system level and contains 4
parameters: sample material, the tube material and size and detector size.

Synthesis formalization The analysis method requires an embodiment
model with the expressiveness depicted in Figure 6.7: 22 parameters describe
the geometry, position and orientation of the components. Discussing the embod-
iment with the expert, and how this is created, revealed 18 auxiliary parameters
to capture the design intent of the x-ray application and several geometric con-
struction parameters. The R- and C-rules are acquired for each embodiment
parameter.

The parameters are grouped into 8 element types: optical chamber, tube,
detector, sample, diaphragm and casing. In addition, there are two element types
that represent the two diaphragm sets, one on either side of the sample. This
is done because there is different knowledge for the positioning and design of
diaphragms on either side. Only a single diaphragm is depicted, but multiple
diaphragms can be inserted.

A full description of the synthesis knowledge is provided in Appendix A.1 and
summarized in Table 6.1. An example of a (simplified) X-rule is given in pseudo
code. The rule adds a number of diaphragms to the primary set, on a random
x-coordinate between the tube and the sample. The diaphragms are placed from
left to right, and (in this example) a C-rule checks if the diaphragms do not
intersect.

70

6.2 Industrial cases

// CONDITION

if ((DSetPrim.IsNotExpanded) &&

(OC.GetParameter(Nprim).IsResolved))

{

// X-rule can be executed

belief = 1.0

}

// ACTION: create sub-elements

{

// how many diaphragms?

Nprim = OC.GetParameter(Nprim).Value

// minimum x-coordinate (right side of tube)

min = CalculateRight(

Tube.GetParameter(x).Value,

Tube.GetParameter(phi).Value,

Tube.GetParameter(A).Value)

// maximum x-coordinate (left side of sample)

max = CalculateLeft(

Sample.GetParameter(x).Value,

Sample.GetParameter(d).Value)

// add diaphragms

for(i = 1 to Nprim)

{

// instantiate elements

element D = new DiaphragmType.Instantiate()

// generate random x value

x = random(min, max)

// resolve x

D.GetParameter(x).Value = x

// new limit for minimum x

min = x

// add diaphragm

DSetPrim.Add(D)

}

71

Chapter 6. Implementation and realization

tube

detectordiaphragm

sample

casing

diaphragm set primary diaphragm set secondary

Figure 6.7: optical chamber, embodiment

Table 6.1: optical chamber, synthesis knowledge summary

PaRC entity quantity

element type 8
parameter 44

X-rule 3
R-rule 19
C-rule 20

72

6.2 Industrial cases

Figure 6.8 shows the parameter dependency graph of the synthesis knowledge.
The labels in the nodes are formatted as Expression (6.1), using the element
names from Table A.1 and parameter names in Table A.2.

< element name > < parameter name > (6.1)

Software development The user interface is shown in Figure 6.9. The
insert window shows the required number of embodiments to be generated (200)
and the mesh settings for analysis.

Figure 6.10 shows the output of the software and several customized analysis
outputs. The top left section displays a plot of the solution space, where each
dot is an embodiment (about 2.500 are generated). This particular plot shows
signal-to-background plotted against sensitivity, but any combination of param-
eters can be selected on the axes. The top right corner shows a sketch of the
selected embodiment, with directly below it some detailed quantification of the
performance. Bottom row shows (right to left): an estimation of the spectrum,
an estimation of the detector view (horizontal axis is the length of the detector),
and a more detailed view of the background ratio (in this case revealing that the
tube is by far the largest contributor).

Validation Validation of the software is done through expert evaluation.
Several scenarios and parameter sensitivities are compared to expected values
from experience.

The quality of the analysis module is validated as proportional to expectations.
This means the software can be used to rank solutions according to calculated
performances, which is in accordance with the intended use of a synthesis tool.

Validation of the generated solutions shows expected characteristics, although
the “shape” of the solution clouds (e.g. Figure 6.10) is sometimes surprising. The
expert whose knowledge is implemented expects a significant reduction in design
time.

The knowledge document and the division of the design process into levels of
abstraction provide insight in the activities and decision moments. The informa-
tion between levels is made explicit and aware to the relevant people. This helps
to prevent miscommunication and unnecessary iteration loops.

The explicit nature of the shape of the cloud serves as communication tool
between disciplines. For experts from different domains, the trends and limitations
of solution cloud is helpful to discuss possibilities. Figure 6.11 shows the solutions
in a plot of a performance parameter versus an embodiment parameter. From the
figure, it is clear that a limit exist for the embodiment parameter to achieve a
certain minimum performance. Experts from other disciplines see what it means
when they ask a 10% increase of an embodiment parameter.

73

C
h
a
p
te

r
6
.

Im
p
le

m
e
n
ta

ti
o
n

a
n
d

re
a
li
z
a
ti

o
n

OC_Nsec

OC_N

OC_Nprim

T_material

OC_Emax OC_Emin

C_tD_t

OC_x0

T_xDet_x S_x

D_OD_yC_l

OC_Lprim

T_y

OC_Phiprim

T_Phi

S_material

OC_y0

Det_y S_y

C_d

OC_LsecOC_Phisec

Det_Phi T_A Det_A

S_t C_materialS_standard

D_x D_k OC_Y0S_d

D_material

F
ig

u
r
e

6
.8

:
p
a
ra

m
et

er
d
ep

en
d
en

cy
g
ra

p
h
,
o
p
ti
ca

l
ch

a
m

b
er

7
4

6.2 Industrial cases

Figure 6.9: user interface, input

Figure 6.10: user interface, output

75

Chapter 6. Implementation and realization

performance 1

embodiment 1

limit

Figure 6.11: solution cloud

76

6.2 Industrial cases

6.2.2 Baggage handling system

A synthesis module is developed for the design of transport networks, in coop-
eration with Vanderlande Industries. The topological freedom of such designs
is modeled by introducing multiple levels of element types. The knowledge to
expand the topological tree is located inside the X-rules.

Overview Vanderlande Industries is a Dutch company that designs and
manufactures, among others, baggage handling systems (BHS). These multi-
million dollar systems are found in larger airports to process the baggage through
a series of belts, scanning devices and sorters toward the aircraft. A schematic
view of such a BHS is shown in Figure 6.12.

Figure 6.12: baggage handling system (copyright Vanderlande Industries)

The BHS design process begins with an airport as customer and ends with
technical drawings of all parts. The process is divided into three major levels of
abstraction:

1. process flow design (PFD): determines the functional design of a BHS, i.e.
what process operations the system performs on a piece of baggage, such
as check-in, screening and sorting. A PFD design is shown in Figure 6.13.
The design is determined in several discussions with the customer;

2. material flow design (MFD): translates the process flow design into a quanti-
fied transport network. At this level there are about 20-30 distinct functional
pieces of equipment that constitute a BHS design;

3. detail design: specifies all mechanical and electronic equipment, ready for
production.

77

Chapter 6. Implementation and realization

Check-in

Screening

Screening Remove

ID read

Manual read

Sorting

check

check

Check-in

Check-in Screening

check check

check

Screening

n

y

n

y n

y

n

y

n

y

Figure 6.13: process flow design (PFD)

Selection The second phase (material flow design) is chosen because it has
a predictable design process and quantifiable performance parameters. The input
for the design process a process flow design (PFD).

MFD design concerns the arrangement of equipment into a network. The bag-
gage is transported over belts and moves from check-in to exit points. Main design
questions are the configuration of equipment into groups and the arrangement of
belts between equipment groups.

Modeling the design process Within the MFD level exists two levels
of abstraction, each identified by their group of performance parameters. The
performance parameters of highest importance are:

1. cost estimation: major pieces of equipment have an estimated cost;

2. capacity: total BHS throughput, in number of bags per hour;

3. redundancy: remaining capacity after failure of a single piece of equipment;

4. in-system time: the maximum time it takes a piece of baggage to travel
from check-in to output point.

The secondary performance indicators are measures for control complexity, space
efficiency, tracking performances and availability. Only the first group of perfor-
mance indicators is taken into account.

Analysis Formalization of the analysis methods is done by automating sev-
eral methods from queuing theory and logistics, discussed in more detail in [15]
and [30]. The analysis methods require the embodiment to be a network of pieces
of equipment, connected to each other by belts. Because these belts are given
an average length, no equipment requires a (three dimensional) position. This
reduces the problem size considerably.

78

6.2 Industrial cases

The analysis methods led to the embodiment parameters and element types.
The PFD processes are high level embodiment element types with a generic struc-
ture: illustrated in Figure 6.14. Each PFD process expands with three sub-
elements: belt network, equipment group set and baggage flow. The belt network
collects the baggage flows from upstream PFD processes. It will construct a net-
work of belts, merge and divert equipment to rearrange the baggage flow. The
equipment group contains the pieces of equipment that operate on the baggage
flows, e.g. screening and sorting. The baggage flow at the right side of the
PFD process is ready to be connected to a downstream PFD processes. This
downstream PFD process is instantiated once the current output baggage flow is
resolved.

The network connections are made through ID tagging: each instantiated
element has a parameter that is the ID of the element it is connected to. These
parameters define an embodiment.

PFD process

belt network equipment group set baggage

flow

baggage

flow

belt belt

n
e

tw
o

rk

equipment group

equipment ...

..
.

..
.

..
.

equipment

baggage

flow

belt

..
.

Figure 6.14: PFD process

Synthesis Separating the knowledge of different PFD functions breaks the
total design problem down into manageable chunks. These PFD functions have
an identical structure except the check-in, sorting and baggage removal. The
synthesis knowledge is given in Appendix A.2 and summarized in Table 6.2.

Table 6.2: BHS design, synthesis knowledge summary

PaRC entities quantity

element type 51
parameter 204

X-rule 46
R-rule 120
C-rule 0

79

Chapter 6. Implementation and realization

A representation of a parameter dependency graph for a PFD process is given
in Figure 6.15. Parameter dependency graphs are not very well suited to repre-
sent knowledge with many topological degrees of freedom. The figure shows the
knowledge as if a PFD process would have only one element of each type. The
labels in the nodes are formatted as Expression (6.2).

< element name > < parameter name > (6.2)

The top section describes X-rules that construct the topology of a PFD func-
tion. The equipment and belt section contain R-rules to determine their individual
baggage flows. The lower section determines the total flow through a PFD and
the required number of equipment groups.

The graph shows X- and R-rules to be predominantly arranged in the same
direction (downward). A few exceptions exist in the “equipment” and “belt” sec-
tion. Allow me to explain: in a network, equipment can be attached to equipment
or a belt, and vice versa. An equipment can resolve its baggage flow only after
the preceding belt is resolved: represented as an arrow pointing up. A parameter
dependency graph of one specific PFD element type would not have this upward
pointing arrows. The reason is that the order belt-belt-equipment-... is known
and the knowledge rules directed accordingly.

An example of the action parts of an X-rule is given that performs the first
topological expansion: the top-most section of Figure 6.15. An example of a
R-rule states the resolve method of the suspect baggage flow on a belt.

// X-rule ACTION: expand PFD process Screening1

{

// instantiate elements

element BN = new BeltNetworkType.Instatiate()

element EqGS = new EquipmentGroupSetType.Instatiate()

element BF = new BaggageFlowType.Instatiate()

// network connections

EqGS.GetParameter(connectedTo).Value = BN.GetParameter(ID).Value

BF.GetParameter(connectedTo).Value = EqGS.GetParameter(ID).Value

// add elements

Screening1.Add(BN, EqGS, BF)

}

80

6.2 Industrial cases

// R-rule ACTION: retrieve baggage flow of connected equipment

{

// get connected equipment, get flow

connectedTo = Belt.GetParameter(connectedTo).Value

suspect = GetElementByID(connectedTo).

GetParameter(suspect)

// resolve suspect flow

Belt.GetParameter(suspect).Value = suspect

}

Automation The synthesis module is automated to generate embodiments,
based on a PFD design. In case of the PFD layout of Figure 6.13, the generated
embodiment is depicted in Figure 6.16. The analysis modules are not integrated
due to time constraints.

The feedback from industry is encouraging for further development of design
automation software to support the design on systems level.

81

Chapter 6. Implementation and realization

PFD_connectedToID

BeltNetwork_connectedToID EqGroupSet_connectedToID

BaggageFlow_connectedToID

Belt_connectedToID

EqGroup_connectedToID

Eq_suspect

Belt_suspect

Eq_cleared

Belt_cleared

Eq_IDread

Belt_IDread

Eq_IDNotRead

Belt_IDNotRead

PFD_numberofInputBelts

BaggageFlow_totalFlow

PFD_totalFlow

PFD_numberOfGroups

PFD_numberofOutputBelts

Eq_connectedToID

Belt_totalFlow

equipment

belt

expand network

total flow and
number of input belts

Figure 6.15: parameter dependency graph, baggage handling system

82

6
.2

In
d
u
stria

l
c
a
se

s

PROCESS_2

PROCESS_3

PROCESS_4

PROCESS_5

PROCESS_6

PROCESS_7

PROCESS_8

PROCESS_9

PROCESS_10

PROCESS_11
PROCESS_12

PROCESS_13

PROCESS_14

PROCESS_15

PROCESS_16

PROCESS_17

check-in screening
level 1

check
+ split

screening
level 2

screening
level 3

check
+ split

check +
split

check
+ split

bag
removal

ID read manual
ID read

sortation

belt
network

F
ig

u
r
e

6
.1

6
:

m
a
teria

l
fl
ow

d
ia

g
ra

m

8
3

Chapter 6. Implementation and realization

6.3 Explicitly documented cases

This section gives PaRC models of four machine elements: a flat belt drive and a
compression, extension and torsion spring. The knowledge source is an engineer-
ing handbook for design of machine elements [25].

The presented description of machine elements is not meant as the knowledge
of the element, rather as an example what a PaRC description could look like.
The descriptions can be expanded or contracted by taking more parameters or
rules into account, or ignoring others. Discussions about the optimal knowledge
models of machine elements is outside the scope of this thesis.

6.3.1 Belt drive

A belt drive is a rotating transmission that features a pulling belt as power trans-
mission element, Figure 6.17(a). Knowledge for belt drive design is documented
in eight pages [25], including theoretical principles, calculations and several prac-
tical considerations for design. An example of how one analysis formula leads to
other rules and parameters is given first.

One of the performance parameters is the stress σ within the belt. Quantifying
this stress requires some geometric information plus a load scenario: Equation
(6.3).

σ =
F1

w· t (6.3)

With F1 being the force in the pulling part of the belt, and w and t the belt
width and thickness, respectively. Following the literature, F1 is further specified
as Equation (6.4).

F1 = Ft· k (6.4)

With Ft the force resulting from the applied torque T1 (6.5) and k being a usability
factor derived from embodiment parameters.

Ft =
2·T1

d1
(6.5)

The analysis Equation (6.3) leads to a number of parameters: σ, F1, Ft, T1, w,
t, d1 and k. Deciding on the type of each parameter is done using the previously
discussed decision scheme, leading to:� embodiment: d1, w and t;� scenario: T1;� performance: σ, F1, Ft;� auxiliary: k.

84

6.3 Explicitly documented cases

Including F1 and Ft in the model increases the expressiveness but can also
be discarded and substituted by other parameters. It depends on the goal of the
model (e.g. education, automation) which expressiveness is sufficient.

Figures 6.17(b) and (c) show the embodiment and scenario, respectively. The
parametric model of a belt drive is stated in Table 6.3.

d1 d2

t, w, material

e

n1

T1

P1

n2

T2

P2

(a) (b) (c)

Figure 6.17: belt drive, embodiment and scenario

Table 6.3: belt drive description

parameter type name description

performance Fa load on axes
Peff effective power transmission

v belt speed
σmax/σ safety factor on stress

fbmax/fb safety factor on bending

scenario T1 torque on pulley 1
T2 torque on pulley 2
n1 rotation speed of pulley 1
n2 rotation speed of pulley 2
P1 power on pulley 1
P2 power on pulley 2

embodiment d1 diameter of driving pulley
d2 diameter of driven pulley
e distance between axes
w belt width
t belt thickness

material belt material

auxiliary i transmission ratio
k usability characteristic
m force ratio
β smallest enclosed arc

Continued on next page

85

Chapter 6. Implementation and realization

Table 6.3 – continued from previous page

parameter type name description

Ltotal length of construction
Lbelt length of belt
vopt optimal belt speed

R-rules The following equations are translated into R-rules, listed in Equa-
tion Set (6.6). The right side indicates which parameters can be resolved through
the equation.

i =
d2

d1
→i, d1, d2

i =
n1

n2
→i, n1, n2

i =
T2

T1
→i, T1, T2

P1 = n1·T1 →P1, n1, T1

P2 = n2·T2 →P2, n2, T2

P1 = P2 →P1, P2 (6.6)

Ltotal =
d1

2
+

d2

2
+ e →Ltotal, d1, d2, e

m = eµ·β →m

k =
m − 1

m
→m, k

β = 2· cos−1

(

dlarge − dsmall

e

)

→β

Lbelt = 2· e· sin
(

β

2

)

+
π

2
· (dlarge − dsmall)

+
π

2
·
(

1 − β

π

)

· (dlarge − dsmall) →Lbelt, e

86

6.3 Explicitly documented cases

C-rules The C-rules from Equation Set (6.7) are included, in addition to
the default solution space for each parameter, such as d1 > 0.01, d1 < 0.5 and a
database of 5 belt materials.

e ≥ d1

2
+

d2

2
→e, d1, d2

d1 ≥ w →d1, w

d2 ≥ w →d2, w

d1 ≥ t· f̄b →d1, t, material (6.7)

d2 ≥ t· f̄b →d2, t, material

w ≥ t →w, t

e ≥ 0.7· (d1 + d2) →e, d1, d2

e ≤ 2· (d1 + d2) →e, d1, d2

if(i ≥ 1) :e ≥ 0.9· d2 →e, d2

Where f̄b is the maximum bending ratio of belt material. The user interface for
the embodiment requirements is shown in Figure 6.19, together with the solutions
as a plot, list and one sketch. Figure 6.18 shows the parameter dependency graph
of a belt drive. Table 6.4 summarizes the knowledge that is taking into account
during synthesis.

Table 6.4: belt drive, synthesis knowledge summary

PaRC entity quantity

element type 1
parameter 18

X-rule 0
R-rule 27
C-rule 23

87

Chapter 6. Implementation and realization

d1

d2

i

l

e

betaRad

beltLength

n1

n2

T1

T2

P1

P2

m

k

material

Figure 6.18: parameter dependency graph, belt drive

88

6.3 Explicitly documented cases

Figure 6.19: graphical user interface, belt drive

89

Chapter 6. Implementation and realization

6.3.2 Compression spring

Figure 6.20 shows the spring and the GUI of the synthesis tool. Table 6.5 sum-
marizes its synthesis knowledge. A complete description is found in Appendix
A.3.

Figure 6.20: compression spring

Table 6.5: compression spring, synthesis knowledge summary

PaRC entity quantity

element type 1
parameter 24

X-rule 0
R-rule 45
C-rule 31

The parameter dependency graph of a compression spring is shown in Figure
6.21.

90

6.3 Explicitly documented cases

R

D

nActive

s

W F

sc

Fmax

Sa

De

w

Di

dWire

Lc

nTotal

material

L0

Ls

Lmin

smax

loadType

endFinish

Figure 6.21: parameter dependency graph, compression spring

91

Chapter 6. Implementation and realization

6.3.3 Extension spring

Figure 6.22 shows the extension spring and the GUI of the synthesis tool. Table 6.6
summarizes its synthesis knowledge. A complete description is found in Appendix
A.4.

Figure 6.22: extension spring

Table 6.6: extension spring, synthesis knowledge summary

PaRC entity quantity

element type 1
parameter 24

X-rule 0
R-rule 42
C-rule 27

92

6.3 Explicitly documented cases

6.3.4 Torsion spring

Figure 6.23 shows the spring and the GUI of the synthesis tool. Table 6.7 sum-
marizes its synthesis knowledge. A complete description is found in Appendix
A.5.

Figure 6.23: torsion spring

Table 6.7: torsion spring, synthesis knowledge summary

PaRC entity quantity

element type 1
parameter 18

X-rule 0
R-rule 34
C-rule 21

93

Chapter 6. Implementation and realization

6.4 Comparison

This section compares the models of synthesis knowledge of the previously dis-
cussed cases, summarized in Table 6.8.

Table 6.8: synthesis knowledge, comparison

case
element
types parameters R-rules C-rules X-rules

belt drive 1 18 27 23 0
compression spring 1 24 45 31 0
extension spring 1 24 42 27 0
torsion spring 1 18 34 21 0
optical chamber 8 44 19 20 3
baggage handl. sys. 51 204 120 0 46

6.4.1 R-rules

Figure 6.24 compares the amount of R-rules with the number of parameters. This
indicates the amount of “deterministic” knowledge in relation to the size of the
problem. The figure depicts a dotted line that represents equal amounts of pa-
rameters and R-rules. It shows that the industrial cases have fewer R-rules per
parameter compared to the literature cases. The literature cases are located rela-
tively close together, indicating similar amounts of knowledge for similar problem
sizes. The cases of belt drive and the three springs have, on average, more than
one R-rule per parameter, a feature that is discussed with more detail next.

0

20

40

60

80

100

120

140

0 50 100 150 200

re
so

lv
e

 r
u

le
s

parameters

industrial cases

literature cases

Figure 6.24: R-rules versus parameters

94

6.4 Comparison

The literature cases have an average of 1.8 R-rule per parameter (from Table
6.8: the total number of R-rules divided by the total number of parameters). This
is in contrast with the industrial cases, where hardly any parameter has more than
one R-rule, as seen in the Appendices A.1 and A.2.

The distribution of parameters over R-rules is given in the histogram in Figure
6.25 and Table 6.9. The histogram shows the number of parameter (y-axis) that
can be resolved by 1-7 R-rules (x-axis). For example, the belt drive contains four
parameters that have one R-rule each and ten parameter with two R-rules. This
means that most parameter can be resolved using multiple rules, and it depends
on the available information which rule is used.

0

2

4

6

8

10

12

1 2 3 4 5 6 7

p
a

ra
m

e
te

rs

res o lv e rules

b elt d riv e

c o m p res s io n s p ring

ex tens io n s p ring

to rs io n

Figure 6.25: number of R-rules per parameter

Table 6.9: number of R-rules per parameter

case 1 rule 2 3 4 5 6 7

belt drive 4 10 1 0 0 0 0
compression spring 8 7 4 1 0 0 1
extension spring 9 7 3 1 0 1 0
torsion spring 7 8 2 0 1 0 0

95

Chapter 6. Implementation and realization

6.4.2 Parameter dependency graphs

The parameter dependency graphs also show multiple resolve paths through the
parameter network. Figure 6.26 depicts the parameter dependency graphs of the
optical chamber and the compression spring, Figures 6.26a and 6.26b respectively.
The experience-based knowledge of optical chamber design has several different
characteristics compared to the more mathematically documented knowledge of
a compression spring.

Expert knowledge from optical chamber design is oriented toward the param-
eters at the bottom row. The parameters form horizontal groups, or levels, with
the R-rules bridging from top to bottom. The mathematical knowledge depicts a
more tangled network with arrows going up, down, left and right.

The expert cases show that the order in which the parameters are resolved
is relatively fixed. This also means that the set of possible input parameters is
limited, because there are no R-rules to traverse or move upward in the network.

The parameter dependency graph of the spring case has much less orientation
in its R-rules. The order in which parameters are resolved is more flexible and
depends on the initially known parameter values. The knowledge model has R-
rules to move more freely through the parameter dependency graph.

In both cases, the synthesis algorithm decides which rules are executed. The
decision is based on the available parameter values, without an explicit strategy
stated beforehand. As discussed in Section 3.4, this behavior is termed “oppor-
tunistic” in cognitive design research [52].

The industrial cases allow less opportunistic freedom for the algorithm, com-
pared to the literature cases. The order in which “industrial” parameters are
resolved is implicitly determined by the R-rules. The algorithm is still oppor-
tunistic, it just finds more or less the same path again and again. There would
be little difference if the solving strategy from the expert would be explicitly
implemented as well.

Comparing the knowledge from industrial and literature cases reveals that
industrial (expert) knowledge is more goal oriented toward a fully defined embod-
iment. As a result, it is less flexible compared to the literature cases.

A characteristic that describes the flexibility, the routine-like nature and mul-
tiple allowed input sets, is the average number of resolve rules per parameter (see
Figure 6.24). The industrial cases have less than one R-rule per parameter. Both
industrial cases have relatively fixed input sets, an implicit strategy for synthesis
and fewer flexibility during the path from requirements to embodiment. More
than one rule per parameter indicates flexibility in input set, solving strategy and
paths from requirements to embodiment.

96

6.4 Comparison

(a) parameter dependency graph, optical chamber

(b) parameter dependency graph, compression spring

Figure 6.26: comparison of parameter dependency graphs

97

Chapter 6. Implementation and realization

6.4.3 Development time

Table 6.10 gives the development times of the synthesis modules. This includes the
activities of knowledge acquisition, modeling in PaRC entities and implementation
into the generic framework. The time indications are rough estimates without
significant scientific value due to the uncontrolled experiment setting, and should
be interpreted with 20-30% error margins. It does however give an impression
about the development effort that is needed.

The three spring cases show a decreasing value due to the learning effect and re-
using of code. Ignoring this effect, it shows that knowledge models of similar size
require roughly the same development effort. The time for the baggage handling
case is double of the optical chamber case, while it has almost five times as many
parameters. The reason for the relatively low development time of the BHS case
is the level of similarity between the knowledge models of the elements, leading
to fast software development.

Table 6.10: development time for synthesis module

case
development time

(weeks)

belt drive 0.8
compression spring 0.8
extension spring 0.6
torsion spring 0.4
optical chamber 4
baggage handling system 8

Figure 6.27 shows the development times of the cases in relation to those of
the early prototypes discussed in Section 2.10. In general, the development effort
is significantly less compared to the prototypes, as well as less scattered. The
two industrial cases indicate scalability, but stating any firm conclusions requires
controlled experiments and a more elaborate data set.

98

6.4 Comparison

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200 250

Development time

(weeks)

Parameters

prototypes

PaRC (literature)

PaRC (industrial)

Figure 6.27: synthesis module development time

99

Chapter 7
Conclusions &

Recommendations

7.1 Conclusions

Mass-deployment of design automation applications in contemporary industry is
not prevented by the automation of models, but by the building of models from
expert knowledge. The tacit nature and the diversity of the knowledge calls for
a method and modeling standard that is independent of the design case at hand.
This thesis proposes such a method for the scope of parametric engineering design.

This thesis provides a methodological translation of tacit and experience-based
knowledge into a model that is subsequently automated to generate multiple de-
sign solutions. The development process of the software is prescribed to reduce
development effort and enable a modular software architecture.

The activities of the knowledge engineering method are prescribed indepen-
dently of the design case and the automation algorithm. Knowledge engineering
becomes an activity without the need to become a design expert or algorithmic
expert. Interview-style knowledge acquisition yields answers that are directly us-
able to develop the model, and a generic algorithm is ready to process any model
that meets the standard.

A key issue for efficient knowledge engineering and software development is
the consistency between knowledge acquisition and eventual automation: do not
acquire something the algorithm cannot process. Consistency is guaranteed by
prescribing the activities in terms of a single model of the design process and
synthesis knowledge, called PaRC. The model is used to standardize the input
and output of the knowledge engineering and software development activities.
Standardization enables use of the same methods, procedures and algorithms
within the applicability scope.

101

Chapter 7. Conclusions & Recommendations

The contribution to literature lies in the methodological documentation of
knowledge engineering of expert knowledge, and subsequent software development
for design automation. This thesis further aims to reduce the overall development
effort of the software program and make the process more predictable in terms of
the activities to execute and the eventual functionality of the software. Within
scope, the method is generically applicable and scalable toward design problems of
higher complexity in terms of number of parameters and topological complexity.

The overall development time of the design automation software is significantly
decreased while the design process itself is made explicit and modeled in a stan-
dardized format. The benefits are most significant toward parametric problems
with predictable topologies.

Lifecycle aspects of the software are positively affected by the modularity of
the software architecture and the knowledge model. The architecture modules
communicate through generic interfaces that enable exchanging modules without
affecting the entire software. The knowledge model consists of self sustaining
modules (elements) that contain a part of the product model together with the
relevant rules, independent of the algorithm. Modifications to the model are local
and do not require algorithmic changes.

All development activities are prescribed in terms of the models of the design
process and synthesis knowledge, resulting in several advantages during the six
development phases of design automation software:

1. decomposition: a design problem is first broken down into levels of abstrac-
tion to discriminate between parameters of higher and lower importance.
Software that aims to support engineering design and fit the original design
process must acknowledge the division between issues of major and minor
importance.

Decomposing a design process into distinct layers of abstraction reduces the
complexity and provides clear system boundaries for the modeling activities.
A design problem has been cut down to manageable size because the experts
have to do it themselves. Experience led him/her to certain (tacit) models.
Missing a model boundary not only leads to a larger problem that does not
fit the original context, but the knowledge to solve the problem might be
missing because the expert does it differently.

A second decomposition step models the design process within a single layer
of abstraction. The model is divided into sub-processes and sub-sets of
information. This phase further reduces complexity and provides system
boundaries on module level.

The model of the design process is determined predominantly by the analysis
method, and the analysis method is determined by the expert. The indirect
modeling method enables the expert to focus on his/her expertise, while the
knowledge engineer receives the necessary information;

102

7.1 Conclusions

2. knowledge acquisition: the begin point of the knowledge acquisition phase
is an incomplete PaRC model, and the goal of this activity is to complete
the model. The knowledge engineer knows what to look for, because the
PaRC modeling entities are known in advance. The explicit nature of the
entities improves communication between knowledge engineer and expert,
making this phase efficient and fast.

Both industrial cases show relatively predictable content of knowledge rules.
This indicates that experience relates to the model size, rather than the
rules;

3. modeling: a total of five standardized entities are used to model synthesis
knowledge as a PaRC model. Using standardized modeling entities enables
efficient modular knowledge engineering of expert knowledge. The resulting
models are easily modified and coupled, thanks to the modularity.

A verbal representation of the knowledge models serves as a knowledge
capturing document. The model describes the conclusion of experience:
the model sizes and knowledge on the “how to move on”-aspect of design
synthesis. Directed graphs are used to graphically depict implicit design
strategies and flexibility of the problem solving capabilities;

4. automation: PaRC models of synthesis knowledge are automated with a
single algorithm. This removes the need for a custom algorithm for each
knowledge model.

Secondly, the algorithm provides the core functionality of the software,
which means the characteristics (and limitations) are known almost imme-
diately after modeling, but before software development. The design experts
see the end goal and its added value before implementation is started. This
enables discussions and modifications when it is still easy to change.

The knowledge is organized in an agent-like manner. Agents in this sense
are the PaRC entities of parameter and elements, who manage their own
value generation and validity thereof. The supervising algorithm guides the
population toward the endpoint: an embodiment. Solution generation is
done in a bottom-up manner: the modeling entities manage their own micro-
knowledge (X-, R- and C-rules) to create a macro-solution (embodiment);

5. generic software development: the software architecture is made to mimic
the model of the design process. The interfaces between the sub-processes
are made generic to allow modular software development. Modularity en-
ables a toolkit-like software development process that reduces error sensi-
tivity and required development effort for multiple cases;

6. user interface: the embodiment parameters are varied to explore design
alternatives in the solution space. The performance parameters are used as
quality measures for parameter sensitivity. Higher level understanding of

103

Chapter 7. Conclusions & Recommendations

the design possibilities and limitations is provided by visualizing the trends
and shapes of the “clouds” of multiple solutions. Communication between
domains is positively affected by visual presentations of solution clouds. The
experts that use the software gain quick insight and use this as a starting
point for further optimization, significantly reducing the total design time
to reach a sufficiently good design.

The development method is applied to six design cases: two industrial cases
with a design expert, and four cases from an engineering handbook. Prototypes
are developed for all cases.

The two industrial cases have distinct levels of abstractions that significantly
reduce the size of the model, compared to the situation where no levels of abstrac-
tions would be used. The resulting software generates design solutions that meet
expectations of the design experts. If a completed software system is available,
the design process is expected to be strongly reduced, with better insight into the
available solutions and improved communication with other domains.

The four cases from the handbook are made into prototypes with significantly
reduced development effort compared to the prototypes that are developed with-
out a prescriptive method.

The main difference between knowledge from literature and human expert is
the amount of deterministic knowledge (R-rules) per parameter. Literature knowl-
edge has, on average, more ways to calculate a value for a parameter, compared
to expert knowledge. This makes literature knowledge more flexible for problem
solving while the experts operate in a more “routine” problem setting: the input
is relatively predictable and the goal of the design process is known.

104

7.2 Recommendations

7.2 Recommendations

A development method is described as an integration of a number of domains,
guided by a central model of synthesis knowledge. First, several recommenda-
tions for research directions of the individual domains are given to improve the
development of design automation applications, depicted in Figure 7.1.

General recommendations to improve upon the “integrated domain”-approach
for software development are given afterward.

knowledge
source

design
automation
software

de
co

m
po

si
tio

n

kn
ow

le
dg

e
ac

qu
is
iti
on

m
od

el
in
g

au
to

m
at

io
n

ge
ne

ric
 s
of

tw
ar

e

de
ve

lo
pm

en
t

us
er

 in
te

ra
ct
io
n

Figure 7.1: knowledge domains and software development

7.2.1 Industrial decomposition

The applicability scope is widened if a broader range of design processes can be
decomposed and modeled. Examples are manufacturing related design processes
and conceptual design. The use of static concepts (such as an analysis method)
are found helpful as a starting point to prescribe the decomposition activity. For
manufacturing related processes, it seems interesting to start from the manufac-
turing process to decompose the relevant information.

Conceptual design can be seen as a construction of conceptual form-function
entities, with the connections as (topological) degrees of freedom. Graph gram-
mars are used to generate conceptual designs using grammars as form-function
entities [23]. A generic layout of a function entity can be used as static entity to
decompose such design processes.

7.2.2 Knowledge acquisition

A wide range of interviewing techniques exists. The method of this thesis offers
a clear begin point and end goal. Existing technique can be used to increase
efficiency and also document knowledge that is not needed for pure automation.
If the core-knowledge is the knowledge required for automation of the design
task, the peripheral knowledge can explain why and relate to researches, studies
or important previous experiences.

105

Chapter 7. Conclusions & Recommendations

7.2.3 Modeling and automation

Challenges on modeling remain for shapes, conceptual design and systems of
equations, among others. Fortunately, a large body of research is available on
the modeling and automation of (design) problems. The proposed PaRC model
can be improved by adding existing algorithms, such as self-learning, look-ahead
and more intelligent conflict solving, strategy planning and optimization.

The knowledge itself can be subjected to evaluation, making it possible to
discuss the correctness of individual knowledge rules. The software can provide
feedback on the knowledge base by showing statistics about the frequency a rule
is used, or how often a parameter has a conflict. This insight into knowledge can
help guide research activities to improve rules or discover new knowledge.

Individual PaRC models can be connected as a flexible network of agents
because of the already agent-like organization of elements and parameters. An
X-rule can connect to an element, which is a software program on its own. The
interface between such systems is the set of requirements, after which the “sub-
program” can begin its own thread of activities as if it were a normal element.
This enables a flexible network of agents, as suggested in [47].

Filtering between PaRC models is essential to prevent explosion of design al-
ternatives. The performance parameters are logical choices to constitute the ob-
jective functions, and only a certain percentage of solutions is selected to proceed
to the next phase.

Existing optimization methods are one of the first expansions in algorithmic
capabilities of the software that will add value for the user. Knowing the Pareto
fronts in multi-objective optimization gives insight in the relevant outlines of
solution spaces, especially if many objectives exist.

Including optimization knowledge to PaRC could be done by rules that use
the same structure as R- and X- rules: O-rules. Such O-rules have the additional
condition that analysis is executed previously. Their action will propose a (hope-
fully) better value for the embodiment parameters or topological structures. The
algorithmic process of adjustment behaves similar to synthesis, with the differ-
ence that parameter values have a “preferred” value, given by the O-rule. The
generative algorithm takes the advice of the optimization rules into account when
deciding upon the next step. The parameter or element that is addressed tries to
satisfy the advised value, if the constrains allow it.

7.2.4 Generic software development

Software development effort is reduced if a generic toolkit, or development kit,
would be available that contains ready-to-use algorithms, which all have generic
interfaces to the modeling entities [48]. If an open-source toolkit is available
for a standardized knowledge language, the functionality of the software can be
increased almost without end.

The Model-Driven Architecture (MDA) approach offers a promising research

106

7.2 Recommendations

direction to further reduce (software) development cost and improve quality for
a truly mass-deployment of software on different programming languages and
platforms. Technologies and techniques for model-driven software generation are
developed such as meta modeling, language definition and extension mechanisms
(such as UML). If the MDA research efforts are combined with standardized
knowledge modeling, the boundary between generic code and specific code is
further advanced. A domain specific modeling language (to define the knowledge
models) is the starting point to develop software programs independently of the
application’s platform.

7.2.5 User interaction

An intuitive and rewarding interaction between user and software is critical for
acceptance in industry. Many things can be done once a cloud of solutions is
generated. For instance: identification of the Pareto fronts, interactive clouds
where different experts can select and de-select solutions. Multiple cross-sections
of the solution space can be placed next to each other, and the performance of a
single solution is seen in all clouds simultaneously. Experts can ask for specific
sensitivity studies, or optimization toward specific corners of the solution space
by relaxing certain requirements.

Improvement of user interaction can also take the direction of interactive
knowledge bases. Users manage their knowledge bases without coding: the do-
main of knowledge management is included into the development procedure.

7.2.6 General

A number of general recommendations for integrated software development meth-
ods are suggested in figure 7.2, depicted as options A, B and C.

The first possibility (A) suggest the inclusion of other domains in the devel-
opment process. For instance, Virtual Reality techniques can be included to offer
new user interaction possibilities. Theories and models from cognitive design sci-
ence can be helpful when following the same knowledge-guided approach as done
in this thesis.

B signifies the use of alternative concepts within a domain, in a flexible manner.
For example, a range of alternative automation and optimization algorithms can
be prepared and plugged in, depending on properties of the problem. This leads
to a toolkit-like approach with generic software modules, greatly advancing the
computational power of the software that can be developed.

C suggest the development of a similar development method for other software
functionalities, such as pure optimization or conceptual design. Different domains
might be involved, but the approach to use a knowledge model as central concept
can be used.

107

Chapter 7. Conclusions & Recommendations

knowledge
source

...
software

A

B

C

design
automation
software

Figure 7.2: alternative development procedures

108

Acknowledgement

This thesis is part of the research project “Smart Synthesis Tools”, started in
2005. The author gratefully acknowledges the support of the Dutch Innovation
Oriented Research Program “Integrated Product Creation and Realization (IOP-
IPCR)” of the Dutch Ministry of Economic Affairs.

Professor Fred van Houten, dank voor onze leuke en nuttige discussies. Maar ook
voor de vrijheid die ik gekregen heb om de Wondere Wereld der Wetenschap te
mogen verkennen (vooral Las Vegas! En Kroatië was ook goed...).

I would also like to thank Professor Tomiyama and Professor Shea for the
interesting discussions about synthesis, science and design. Professor Wengenroth
and Professor Bauchau for their excellent presentations at the right time. I thank
you all for giving me critical input and feedback during my research.

Tevens ben ik mijn dank verschuldigd aan alle heren uit de industrie die een
bijdrage hebben geleverd aan mijn promotie. Met name mijn begeleiders bij PAN-
alytical en Vanderlande: Walter van den Hoogenhof, Rob de Lange en Roy van
Putten. Daarnaast dank ik ook de rest van de begeleidingscommissie voor de
discussies en feedback.

Furthermore, I would like to give some more personal thanks to a number people
“without whom, none of this would have been possible”. First and foremost my
parents, op wie de voorgaande frase in de meest letterlijke zin van toepassing is.
Jullie steun en gezelschap is enorm belangrijk voor mij en heeft mij veel geholpen.
Ik dank jullie, en hoop er nog lang van te kunnen genieten. Ik hoop dat het nieuw
huisje het warme hart van de familie wordt.

Kelly, mijn lieve vrouw, die aan mijn zijde stond gedurende de afgelopen vier
jaar. Die al dat geneuzel over kennisregels heeft moeten aanhoren. Respect, liefde
en steun. Zonder jou...

109

Zus Maaike, die op enige afstand toch altijd dichtbij is. Hopelijk tot snel!
Zusjes Annemiek en Leontien die beide ontzettend goede moeders zullen zijn, en
met hun natuurlijk Robbie en Joost, die fantastische vaders zullen zijn! Elsje, die
er gelukkig altijd is.

Mijn begeleider Frans Kokkeler, voor onze eindeloze gesprekken over even
zoveel onderwerpen. Ik ben ervan overtuigd dat jouw visie en stimulatie bepalend
zijn geweest voor het resultaat van mijn promotie. Niet alleen voor de inhoud,
maar ook zeker voor het plezier dat ik heb gehad tijdens de lange rit.

Snel daar achteraan komt Hans, die ook veel invloed heeft gehad op zowel
de inhoud van mijn boekje als de weg er naartoe. De Paarse Bank, de gelijk-
namige wereld, je weet wel. Hopelijk kunnen we samen nog veel projecten doen!
Georg Still, dank voor je wiskundige kijk op mijn onderzoek en discussies over
“marriage”-problemen!

Mijn collega’s van de vakgroep, die op gezette momenten een fijne discussie
of gewoon slap geouwehoer mogelijk maakten. Bedankt voor de goede sfeer, die
zich hopelijk uitstrekt in de toekomst! Een speciaal dankwoord voor de zingende
Ajoo’s: Gijs, Frederik en Irene. Onze muzikale ontdekkingstocht was leuk en
verhelderend: zingen is niets voor mij.

Wessel, mijn walking-talking helpdesk en bovenal goede vriend. De enige die
meteen weet waar in mijn LATEX-code ik een uitroeptekentje, apostrofje dan wel
minteken ben vergeten. Ongelofelijk. Enorm bedankt. Ontzettend leuk om samen
te studeren, promoveren en hierna docenteren.

Rutger, ook jou dank ik voor je aanwezigheid tijdens de middelbare school,
studie en promotie tijd. Op de volgende!

Juan, een fijne collega en vriend. Leuke discussies, let’s keep it up! Maerten,
the code-magician. MarcoO, el valorisator! Njels, de baas. Goed dat jullie er
waren, zijn en zullen zijn! En de rest van de Ajoo’s natuurlijk: Matthhijss, Jan,
Denise-Denise, Boris und Der Krein. Maar ook in het Westen des Landsch, waar
het sjaaltje van Hanz vrolijk wappert: Valentina.

De raggende stammetjes: Wout, Jens & Mijke, Richard en Thijz. Het Hooge
Noorden, de Spiegel/Images. Ze roepen. Wout: bedankt voor je hulp met de
voorkant! Looking good...

Natuurlijk mag de 67-clan niet vergeten worden: Nannoekie, Vincent, Germ,
Jorien, Jop, Ronaldicus P., Casper Joost. De Groene Draeck-mannen: Sieger,
Rutger en Robbie (zum zweiten Mal), Ronald en C! Vaker oud&nieuw diners en
feesten!

Nou is het niet de bedoeling dat ik nog meer bladzijden volschrijf, dus ik moet
er een eind aan breien. Ik heb genoten en hoop jullie allemaal snel weer te zien.
Voor iedereen die ik niet met naam genoemd heb: ontzettend bedankt en tot snel!

110

List of References

[1] S.L. Ahire and P. Dreyfus. The impact of design management and process
management on quality: an empirical investigation. Journal of Operations
Management, 18: 549-575, 2000. [cited at p. 1]

[2] E.K. Antonsson and J. Cagan. Formal Engineering Design Synthesis. Cam-
bridge University Press, 2001. [cited at p. 14, 17]

[3] Roman Barták. Constraint programming: in pursuit of the holy grail. Pro-
ceedings of WDS99, Prague, 1999. [cited at p. 15, 36, 39]

[4] J. Bento, B. Feijo, and D.L. Smith. Engineering design knowledge representa-
tion based on logic and objects. Computers and Structures, 63 - 5: 1015-1032,
1997. [cited at p. 31]

[5] F. Bolognini, A.A. Seshia, and K. Shea. Exploring the application of a
mult-domain simulation-based computational synthesis method in mems de-
sign. Proceedings of the 16th International Conference on Engineering De-
sign, ICED’07, 2007. [cited at p. 14]

[6] J. Cagan, M.I. Campbell, S. Finger, and T. Tomiyama. A framework for
computational design synthesis: Models and applications. Journal of Com-
puting and Information Science in Engineering, 5: 171-181, 2005. [cited at p. 6,

14]

[7] M.I. Campbell, J. Cagan, and K. Kotovsky. Agent-based synthesis of electro-
mechanical design configurations. Journal of Mechanical Design, 122/61,
2000. [cited at p. 14]

[8] M.I. Campbell, J. Cagan, and K. Kotovsky. The a-design approach to manag-
ing automated design synthesis. Research in Engineering Design, 14: 12-24,
2003. [cited at p. 14]

111

[9] A. Chakrabarti. Engineering Design Synthesis: Understanding, Approaches
and Tools, volume ISBN 1852334924. Springer Verlag, London, 2002.
[cited at p. 14]

[10] H. Draijer and F.G.M. Kokkeler. Heron’s synthesis engine applied to linkage
design- the philosophy of watt software. Proceedings of the Design Engineer-
ing Technical Conferences and Computer and Information in Engineering
Conference, Montreal 2002, DETC2002/MECH-34373, 2002. [cited at p. 19]

[11] N.F.O. Evbuomwan, S. Sivaloganathan, and A. Jebb. A survey of design
philosophies, models, methods and systems. Journal of Engineering Manu-
facture, 210: 301-320, 1996. [cited at p. 26]

[12] E.A. Feigenbaum. How the “what” becomes the “how”. communications of
the ACM, 39, 1996. [cited at p. 17]

[13] E.A. Feigenbaum. Some challenges and grand challenges for computational
intelligence. Journal of the ACM, 50, 2003. [cited at p. 17]

[14] D. Fensel. The Knowledge Acquisition and Representation Language, KARL.
Kluwer Academic Publishers, 1995. [cited at p. 13, 17]

[15] W. Geerdes. Smart design of baggage handling systems. Master’s the-
sis, University of Twente, Faculty of Engineering Design, OPM-816, 2007.
[cited at p. 78]

[16] J.S. Gero and U. Kannengiesser. The situated function-behaviour-structure
framework. Design Studies, 25(373-391), 2004. [cited at p. XV, 11, 12]

[17] R. Green. Cad manager survey 2004: Part 2. Cadalyst (www.cadalyst.com),
2004. [cited at p. 1]

[18] R.M. Henderson and K.B. Clark. Architectural innovation: the reconfigu-
ration of existing product technologies and the failure of established firms.
Administrative Science Quarterly, 35(1990): 9-30, 1990. [cited at p. 1]

[19] V. Hubka and W.E. Eder. Design Science. Springer-Verlag, 1996. [cited at p. 9]

[20] S. Kirkpatrick, C.D. Gelatt jr., and M.P. Vecchi. Optimization by simulated
annealing. Science, 13: 671-980, 1983. [cited at p. 15]

[21] T.D. Kuczmarski. Managing new products: competing through excellence.
in: Rao199, pp. 83-84, 1998. [cited at p. 1]

[22] V. Kumar. Algorithms for constraint satisfaction problems: a survey. AI
magazine, 13(1): 32-44, 1992. [cited at p. 15, 28]

112

[23] T. Kurtoglu and M.I. Campbell. A graph grammar based framework for
automated concept generation. Proceedings of the International Design Con-
ference 2006, pp. 61-68, 2006. [cited at p. 14, 105]

[24] R.T. Marler and J.S. Arora. Survey of multi-objective optimization methods
for engineering. Structural and multidisciplinary optimization, 26: 369-395,
2004. [cited at p. 15]

[25] W. Matek, D. Muhs, H. Wittel, and M. Becker. Roloff-Matek machine-
onderdelen. Academic Service Schoonhoven, 1996. [cited at p. 20, 84]

[26] Ohsuga In: C. McMahon and J. Brown. CAD/CAM principles, prac-
tise and manufacturing management. Addison-Wesley Longman Ltd, 1998.
[cited at p. XV, 26, 27]

[27] MOKA consortium Melody Stokes. Managing Engineering Knowledge:
MOKA. Professional Engineering Publication, 2001. [cited at p. 16, 18]

[28] J. Miedema, M.C. van der Voort, and F.J.A.M. van Houten. Application of
synthetic environments in product design. CIRP Journal of Manufacturing
Science and Technology, 1: 159-164, 2009. [cited at p. 19]

[29] J. Moss, J. Cagan, and K. Kotovsky. Learning from design experience in an
agent-based design system. Research in Engineering Design, 15: 77-92, 2004.
[cited at p. 14]

[30] N. Nijenmanting. Towards a synthesis tool for baggage handling systems.
Master’s thesis, University of Twente, Faculty of Engineering Design, OPM-
844, 2008. [cited at p. 78]

[31] P.Y. Papalambros and D.J. Wilde. Principles of Optimal Design- Modeling
and Computation. Cambridge University press, 2000. [cited at p. 6]

[32] K.S. Pawar and J.C.K.H. Riedel. A survey of cad use in the uk mechani-
cal engineering industry. International Journal of Computer Applications in
Technology, 9(4): 219-228, 1996. [cited at p. 2]

[33] C.K. Prahalad and K. Lieberthal. The end of corporate imperialism. Harvard
Business Review, 2003. [cited at p. 1]

[34] S.S. Rao, A. Nahm, S. Zhengzhong, X. Deng, and A. Syamil. Artificial
intelligence and expert systems applications in new product development- a
survey. Kluwer Academic Publishers, 1999. [cited at p. 1]

[35] B. Raphael and I.F.C. Smith. Fundamentals of Computer-Aided Engineering.
Wiley, 2003. [cited at p. 17]

[36] R. Rothwell. Toward the fifth-generation innovation process. International
Marketing Review, 11(1): 7-31, 1994. [cited at p. 1]

113

[37] O.W. Salomons. Computer support in the Design of Mechanical Products.
Copyprint 2000, 1995. [cited at p. 18]

[38] K. Schilstra. Towards continuous knowledge engineering. PhD Thesis. 2003.
[cited at p. 17]

[39] W.O. Schotborgh, F.G.M. Kokkeler, H. Tragter, M.J. Bommhoff, and
F.J.A.M. van Houten. A generic synthesis algorithm for well-defined para-
metric design. Proceedings of the 18th CIRP Design Conference, 2008.
[cited at p. 29]

[40] W.O. Schotborgh, F.G.M. Kokkeler, H. Tragter, and F.J.A.M. van Houten. A
bottom-up approach for automated synthesis tools in the engineering design
process. Proceedings of International Design Conference 2006, pp. 349-356,
2006. [cited at p. 19, 55]

[41] W.O. Schotborgh, H. Tragter, F.G.M. Kokkeler, F.J.A.M. van Houten, and
T. Tomiyama. Towards a generic model of smart synthesis tools. Proceedings
of the CIRP Design Seminar 2007, 2007. [cited at p. 19]

[42] T.W. Simpson, J.D. Peplinksi, P.N. Koch, and J.K. Allen. Metamodels for
computer-based engineering design: survey and recommendations. Engineer-
ing with Computers, 2001. [cited at p. 2]

[43] P. Sridharan and M.I. Campbell. A grammar for function structures. Pro-
ceedings of the ASME Design Engineering Technical Conference, 3: 41-55,
2004. [cited at p. 14]

[44] A.C. Starling. Performance-based computational synthesis of parametric me-
chanical systems. PhD thesis, 2004. [cited at p. 14]

[45] S. Studer and V.R Benjamins. Knowledge engineering: principles and meth-
ods. Data & Knowledge Engineering, 25: 161-197, 1998. [cited at p. 18, 28]

[46] M. Tideman. Scenario Based Product Design. PhD Thesis. Printpartners
Ipskamp, 2008. [cited at p. 19]

[47] T. Tomiyama and W.O. Schotborgh. Yet another model of design synthe-
sis. Proceedings of the 16th International Conference on Engineering Design,
ICED’07, pp. 83-84, 2007. [cited at p. 26, 106]

[48] H. Tragter, W.O. Schotborgh, M.H.L. Röring, and F.J.A.M. van Houten.
Generic data architecture for parametric synthesis systems. Proceedings of
CIRP Design Conference 2008, Enschede, 2008. [cited at p. 58, 106]

[49] D.G. Ullman. Toward the ideal mechanical engineering design support sys-
tem. Research in Engineering Design, 13(2): 55-64, 2002. [cited at p. 2]

114

[50] Y. Umeda and T. Tomiyama. Fbs modeling: Modeling scheme of function
for conceptual design. 1995. [cited at p. 10]

[51] C. Vempati and M.I. Campbell. A graph grammar approach to generate
neural network topologies. 2007 Proceedings of the ASME Design Engineer-
ing Technical Conferences and Computers and Informatics in Engineering
Conference, 6: 79-89, 2008. [cited at p. 14]

[52] W. Visser. Designing as construction of representations: A dynamic view-
point in cognitive design research. Human-Computer Interaction, 21: 103-
152, 2006. [cited at p. 23, 35, 36, 96]

[53] B.J. Wielinga, A.T. Schreiber, and J.A. Breuker. Kads: a modelling approach
to knowledge engineering. Knowledge Acquisition, 4: 5-53, 1992. [cited at p. 13]

[54] H. Yoshikawa. General design theory and a cad system. Man-Machine Com-
munication in CAD/CAM, 1981. [cited at p. 10]

[55] M. Yoshioka, Y. Umeda, H. Takeda, Y. Shimomura, Y. Nomaguchi, and
T. Tomiyama. Physical concept ontology for the knowledge intensive en-
gineering framework. Advanced Engineering Informatics, 18: 95-113, 2004.
[cited at p. 12]

[56] W.J. Zhang, Y. Lin, and N. Sinha. On the function-behavior-structure model
for design. Canadian Design Engineering Network conference 2005, CD,
2005. [cited at p. XV, 10, 11]

115

Appendices

117

Appendix A
Synthesis knowledge

A.1 Optical chamber

This section states the knowledge base for synthesis, as implemented in the pro-
totype for optical chamber design.

A.1.1 Elements and parameters

The elements of the optical chamber are stated in table A.1 and the parameters
in table A.2. Figure A.1 illustrates the parameters concerning the optical axis.

Table A.1: optical chamber, elements

name description

OC optical chamber
T tube
Det detector
S sample
C casing
D diaphragm
DSP diaphragm set primary side
DSS diaphragm set secondary side

119

Table A.2: optical chamber, parameters

type name description

scenario Smat sample material
TA tube surface area
Tmat tube material
DetA detector surface area

embodiment T(x,y) tube position
Tα tube orientation
Det(x,y) detector position
Detα detector orientation
S(x,y) sample position
Sd sample diameter
Sα sample orientation
St sample thickness
Cmat casing material
Cd casing diameter
CL casing length
Ct casing thickness
Dmat diaphragm material
Dt diaphragm thickness
DO diaphragm aperture opening
D(x,y) diaphragm aperture center
Dα diaphragm orientation
Dk diaphragm knife edge

auxiliary OCβP angle primary axis
OCLP length primary axis
OCβS angle secondary axis
OCLP length secondary axis
OC(x,y) optical center (x, y)
OCEmax maximum energy
OCEmin minimum energy
OCNT total number of diaphragms
OCNP number of primary diaphragms
OCNS number of secondary diaphragms
OCmidpoint focus on sample midpoint (y/n)
SV A sample view area
Sstandard sample standard (y/n)
DSPsample DSP against sample (y/n)
DSPtube DSP against tube (y/n)
DSSsample DSS against sample (y/n)

Continued on next page

120

Table A.2 – continued from previous page

type name description

DSSdetector DSS against detector (y/n)

OCßP

St

Dk

CL

Cd

TA Tα

DetA

Detα

Ct

OCßS

Sd

OC(x, y)

OCLSOCLP

Dt

Dxx

y

Figure A.1: optical axis

A.1.2 X-rules

The X-rules are stated in set A.1. The required information is included on the
left side of the arrow, and any parameter values that are resolved are indicated
on the right hand side.

OC
expands−−−−−→T, Det, S, C, DSP, DSS (A.1)

DSP (DSPsample, DSPtube, OCNP ,

S(x), Sd, T(x), Tα, TA)
expands−−−−−→D(x)

DSS(DSSsample, DSSdetector, OCNS ,

S(x), Sd, Det(x), Detα, DetA)
expands−−−−−→D(x)

A.1.3 R-rules

The R-rules are stated in equation set (A.2).

OC(x,y) = f(OCmidpoint, S(x,y), St) →OC(x,y) (A.2)

OCNT = OCNP + OCNS →OCNT , OCNP , OCNS

OCEmax = f(Tmat) →OCEmax

121

OCEmin = f(Tmat) →OCEmin

T(x) = OC(x) − OCLP · cos(OCβP) →T(x)

T(y) = OC(y) − OCLP · sin(OCβP) →T(y)

Tα = f(OCβP) →Tα

Det(x) = OC(x) + OCLS · cos(OCβS) →Det(x)

Det(y) = OC(y) − OCLS · sin(OCβS) →Det(y)

Detα = f(OCβS) →Detα

S(x,y) = f(St, OC(x,y), OCmidpoint) →S(x,y)

Cd = f(T(y), TA, Tα, Det(y), DetA, Detα, S(y), St) →Cd

CL = f(T(x), TA, Tα, Det(x), DetA, Detα) →CL

Ct = f(CEmax, Cmat) →Ct

(DO + D(y)) = f(D(x), Dt, Dk, OC(x,y), Sd, SV A,

T(x,y), TA, Tα, Det(x,y), DetA, Detα)
1−→(DO + D(y))

Dt =
ln(0.1)

−Tmat.µ·Tmat.ρ

2−→Dt

Dk = f(OCβS , OCβP) →Dk

notes

1. parameters DO + D(y) are resolved simultaneously;

2. mat.µ is the attenuation coefficient of a material, mat.ρ is the density.

A.1.4 C-rules

C-rules are given in equation set (A.3).

sin(OCβP) ≥
TA

2 · sin(Tα)

OCLP

→OCβP , OCLP , TA, Tα (A.3)

cos(OCβP) ≤
Sd

2 + OCNP ·Dt + TA

2·cos(Tα)

OCLP

→OCβP , OCLP , OCNP , TA, Tα, Sd

sin(OCβS) ≥
DetA

2 · sin(Detα)

OCLS

→OCβS , OCLS , DetA, Detα

cos(OCβS) ≤
Sd

2 + OCNS ·Dt + DetA

2·cos(Detα)

OCLS

→OCβS , OCLS , OCNS , DetA, Detα, Sd

122

A.2 Baggage handling systems

This section presents the synthesis knowledge as implemented in the prototype
for baggage handling system (BHS) design.

The discussion on elements, parameters, X-rules and R-rules is divided into
five categories, table A.3.

Table A.3: categories

category description

PFD process main processes of a BHS
EquipmentGroupSet contains multiple equipment groups
EquipmentGroup contains multiple pieces of equipment
Equipment handles the baggage
Miscellaneous elements Area, BeltNetwork and BaggageFlow

A.2.1 Elements

In total there are 51 elements, as summarized in table A.4 and elaborated further
in this section.

Table A.4: elements

name quantity

PFD process 10
EquipmentGroupSet 9
EquipmentGroup 9
Equipment 19
Miscellaneous 4

PFD process The BHS functional design is described with the 10 PFD
process elements stated in table A.5.

123

Table A.5: PFD process elements

name description

CheckIn check-in belt (BHS input)
HBS12 hold baggage screening level 1 + 2
HBS34 hold baggage screening level 3 + 4
HBS5 hold baggage screening level 5
SuspectBagSplit split baggage flow into cleared and suspect
BagRemoval removes bag from system (BHS output)
DetermineID determine the ID tag on baggage
IDReadSplit split baggage flow into ID read and not read
ManualCoding manual determination of ID tag on baggage
Sortation sort baggage to chutes (BHS output)

Equipment/Group/Set Each PFD process element contains an element
XXEquipmentGroupSet, where XX is the name of the PFD process. Within
this set, there are multiple elements XXEquipmentGroup. The only exception is
CheckIn, which does not have EquipmentGroupSet or EquipmentGroup. For the
others, this introduces 19 elements.

The EquipmentGroup element contains the actual equipment that operate on
the baggage flow. The list of 19 equipment elements is given in table A.6.

Table A.6: equipment elements

PFD process name description

general Belt contains baggage flow
FeedInBelt feed baggage into equipment
Divert12 split one flow into two
Merge21 merge two flow into one

HBS12 ScreeningMachineLevel1 level 1 screening
ScreeningMachineLevel2 level 2 screening

HBS34 ScreeningMachineLevel3 level 3 screening
ScreeningMachineLevel4 level 4 screening

HBS5 ScreeningMachineLevel5 level 5 screening
SuspectBagSplit SuspectBagDivertInput split flow into

suspect and cleared
SuspectBagDivertExitSuspect divert exit, suspect
SuspectBagDivertExitCleared divert exit, cleared

Continued on next page

124

Table A.6 – continued from previous page

PFD process name description

BagRemoval BagRemovalEquipment removes baggage from BHS
DetermineID DetermineIDMachine reads ID tags on baggage
IDReadSplit IDReadDivertInput splits flow into

ID read and ID not read
IDReadDivertExitRead divert exit, ID read
IDReadDivertExitNotRead divert exit, ID not read

ManualCoding ManualCodingStation reads ID tags manually
Sortation Sorter sorts baggage to exit chutes

Miscellaneous Contains the 4 elements of table A.7.

Table A.7: miscellaneous elements

name description

Area the “mother-element” that contains the PFD processes
BeltNetwork collects incoming baggage flow for PFD process
BaggageFlow contains the belts
Network redistributes the baggage flow over belts

A.2.2 Parameters

BHS synthesis knowledge contains 204 parameters, summarized in table A.8 and
elaborated in the following sections.

Table A.8: parameters

name quantity

PFD process 55
EquipmentGroupSet 9
EquipmentGroup 9
Equipment 128
Miscellaneous 3

125

PFD process Table A.9 lists the 6 “generic” parameters for the PFD pro-
cesses. Exceptions are listed in table A.10. The total amount of parameters on
PFD process level: (10 PFD processes)·(6 parameters) - 5(see Table A.10) = 55.

Table A.9: PFD process parameters

name description

totalFlow total baggage flow through PFD process
maxFlow maximum baggage flow
numberOfGroups number of equipment groups
numberOfInputBelts number of input belts
numberOfOutputBelts number of output belts
connectedToID connection data

Table A.10: modifications

name modification

CheckIn minus numberOfGroups, numberOfInputBelts,
numberOfOutputBelts, connectedToID

Sortation minus numberOfOutputBelts
BagRemoval minus numberOfOutputBelts
DetermineID added onlyClearedBaggage y/n

Equipment/Group/Set The EquipmentGroupSet and EquipmentGroup
all have a single parameter: connectedToID. Resulting in 18 parameters.

The equipment elements have parameters, as specified in table A.11 (Screen-
ingMachineLevelN is abbreviated to ScreeningN and SuspectBagDivert into Sus-
pectBD).

Table A.11: equipment parameters

equipment name description

Belt connectedToID network connection
totalFlow total baggage flow

Continued on next page

126

Table A.11 – continued from previous page

equipment name description

maxFlow maximum baggage flow
suspect amount of suspect baggage
cleared amount of cleared baggage
IDRead amount of ID read baggage
IDNotRead amount of ID not read baggage

FeedInBelt idem Belt idem Belt
Divert12 connectedToID network connection

ratio ratio left/right baggage flow
Merge21 connectedToID1 network connection

connectedToID2 network connection
Screening1 connectedToID network connection

totalFlow total baggage flow
maxFlow maximum baggage flow
suspect amount of suspect baggage
cleared amount of cleared baggage
IDRead amount of ID read baggage
IDNotRead amount of ID not read baggage
percentCleared percentage of baggage cleared

Screening2 idem Screening1 idem Screening1
Screening3 idem Screening1 idem Screening1
Screening4 idem Screening1 idem Screening1
Screening5 idem Screening1 idem Screening1
SuspectBDInput idem Belt idem Belt
SuspectBDExitSuspect idem Belt idem Belt
SuspectBDExitCleared idem Belt idem Belt
BagRemovalEquipment connectedToID network connection

totalFlow total baggage flow
maxFlow maximum baggage flow

DetermineIDMachine idem Belt idem Belt
percentageRead percentage of ID tags read

IDReadDivertInput idem Belt idem Belt
IDReadDivertExitRead idem Belt idem Belt
IDReadDivertExitNotRead idem Belt idem Belt
ManualCodingStation idem Belt idem Belt

percentageRead percentage of ID tags read
Sorter idem Belt idem Belt

numberOfExits number of exit chutes
length length of the sorter

127

The equipment parameters: (11 · 7 Belt parameters) + (5 · 8 Screening1
parameters) + 11 = 128 parameters.

Miscellaneous Only the element BaggageFlow has three parameters: num-
berOfBelts, connectedToID and totalFlow.

A.2.3 X-rules

A total of 46 X-rules are used to construct the topological tree: table A.12, and
discussed in categories. The X-rules also resolve the connectedToID parameter
for their sub-elements.

Table A.12: X-rules

category quantity

PFD process 27
EquipmentGroupSet 9
EquipmentGroup 9
Equipment 0
Miscellaneous 1

PFD process PFD processes have, in general, three X-rules:

1. expand and connect BeltNetwork, EquipmentGroupSet and BaggageFlow;

2. expand and connect Belts in BeltNework (to collect baggage flow from up-
stream PFD processes);

3. expand and connect Belts in BaggageFlow (the output side).

Exceptions are CheckIn, which does not have the second type, and BagRemoval
and Sortation, which do not have the third type. In total, that brings 27 X-rules
on PFD process level.

Equipment/Group/Set All EquipmentGroupSet elements have one R-
rule to expand and connect with the required number of EquipmentGroups. In
turn, these elements expand and connect their specific configuration of equipment.
For these elements there are in total 18 X-rules.

Miscellaneous BeltNetwork expands its topology with two BaggageFlows
and a Network in between: one X-rules.

128

A.2.4 R-rules

120 R-rules are required for synthesis of BHS design: table A.13 and discussed in
categories.

Table A.13: R-rules

category quantity

PFD process 35
EquipmentGroupSet 0
EquipmentGroup 0
Equipment 83
Miscellaneous 2

PFD process The “generic” R-rules for PFD processes are four in total,
table A.14.

Table A.14: parameters and R-rules

parameter R-rule

totalFlow sum the flows inside BaggageFlow of BeltNetwork
numberOfGroups divide totalFlow with maxFlow of equipments
numberOfInputBelts count number of input belts in

first equipment of each EquipmentGroup
numberOfOutputBelts count number of output belts in

last equipment of each EquipmentGroup

Exceptions are CheckIn, which has no R-rules, and BagRemoval which has no
output belts. This results in 10 · 4 - 5 = 35 R-rules.

Equipment/Group/Set The elements EquipmentGroupSet and Equipment-
Group have no R-rules, but equipment does. The five “generic” R-rules for equip-
ment concern the baggage flow. Each flow (suspect, cleared, ID read and ID not
read) is retrieved from the upstream equipment and processed, if necessary (e.g.
suspect becomes cleared for a screening machine). The parameter totalFlow is a
summation of the suspect and cleared baggage flow.

Exceptions are:

1. BaggageRemovalEquipment: only one R-rule for totalFlow: resolved by
retrieving from upstream equipment;

129

2. Divert12: no R-rules;

3. Merge21: no R-rules;

4. Sorter: in addition resolves sorterLength and numberOfExits from totalFlow.

This brings the number of equipment R-rules to: 19 · 5 - 12 = 83.

Miscellaneous BaggageFlow has two R-rules: for numberOfBelts and to-
talFlow.

A.3 Compression spring

This section states the knowledge base for synthesis, as implemented in the pro-
totype for compression springs.

A.3.1 Parameters

The parameters are given in table A.15.

Table A.15: compression spring, parameters

type name description

performance F force at compression
W stored energy at compression

scenario s compression
load type load type

embodiment D mean diameter of spring body
L0 length of spring body
ntotal total coils
mat material
d wire diameter (DIN specified)
end finish end finish

auxiliary Ls length at compression
R spring constant
smax maximum compression
Lmin minimum operational length
nactive active coils
w winding ratio
Sa minimum space between coils
Di internal diameter

Continued on next page

130

Table A.15 – continued from previous page

type name description

De external diameter
Lc bloc length
sc bloc compression
Fmax force at bloc compression
σ stress at bloc compression
σmax maximum allowed stress

A.3.2 R-rules

R-rules are given in equation set (A.4).

R =
mat.G

8
· d4

D3·nactive

→R, D, nactive (A.4)

R =
F

s
→R, F, s

W =
R· s2

2
→W, R, s

σmax = 0.45· (mat.Rm1− mat.Rm2· log(d)) →σmax

Lmin = Lc + Sa →Lmin, Lc, Sa

L0 = sc + Lc →L0, sc, Lc

d = k1· 3

√

F ·De
1−→d

ntotal = nactive + factor
2−→ntotal, nactive

Sa = (0.0015· D2

d
+ 0.1· d)·nactive

= 0.02· (D + d)·nactive

= 1.5·Sa

= 2·Sa
3−→Sa, D, nactive

w =
D

d
→w, D

D =
Di + De

2
→D, Di, De

Di = D − d →Di, D

De = D + d →De, D

Fmax = R· sc →Fmax, R, sc

131

σ = Fmax·
D

0.4· d3
→σ, Fmax, D

Lc = (ntotal + factor)· d 4−→Lc, ntotal

L0 = s + Ls →L0, s, Ls

L0 = smax + Lmin →L0, smax, Lmin

notes

1. k1 depends on material, and the calculated wire diameter is matched to the
nearest in the DIN specification;

2. factor depends on material, either 2 or 1.5;

3. these rules are considered together, taking into account the load type and
material. The resolved parameters are Sa, D or nactive;

4. factor depends on material and end finish.

A.3.3 C-rules

C-rules are given equation set (A.5).

d ≥ mat.dmin →d, mat (A.5)

d ≤ mat.dmax →d, mat

D ≤ mat.Dmax →D, mat

L0 ≤ mat.Lmax →L0, mat

nactive ≥ mat.nmin →nactive, mat

w ≥ mat.wmin →w, mat

w ≤ mat.wmax →w, mat

σ ≤ σmax →σ, σmax

F ≤ Fmax →F, Fmax

Lc ≤ Lmin →Lc, Lmin

Lmin ≤ L0 →Lmin, L0

s ≤ smax →s, smax

L0 ≥ d·ntotal →L0, d, ntotal

Ls ≥ Lmin →Ls, Lmin

smax ≤ sc →smax, sc

132

A.4 Extension spring

This section states the knowledge base for synthesis, as implemented in the pro-
totype for extension springs.

A.4.1 Parameters

Table A.16: extension spring, parameters

type name description

performance F force at extension
W stored energy at extension

scenario s extension
load type load type

embodiment D mean diameter of spring body
L0 total length
ntotal total coils
nactive active coils
mat material
d wire diameter (DIN specified)
end finish end finish type
F0 pre-load

auxiliary R spring constant
Lk length of active spring body
Di internal diameter
De external diameter
Lh length of end-finishes
L length at extension
smax maximum extension
Lmax length at maximum extension
Fmax force at maximum extension
σ stress at maximum extension
σmax maximum allowed stress
w winding ratio

133

A.4.2 R-rules

R-rules are given in equation set (A.6).

R =
mat.G

8
· d4

D3·nactive

→R, D, nactive (A.6)

R =
F − F0

s
→F, F0, R, s

W =
R· s2

2
→W, R, s

σ = Fmax·
D

0.4· d3
→σ, D, Fmax

σmax = 0.45· (mat.Rm1− mat.Rm2· log(d)) →σmax

Lmax = L0 + smax →Lmax, L0, smax

L = L0 + s →L, L0, s

Lh = factor·Di
1−→Lh

d = k1· 3

√

F ·De
2−→d

ntotal = nactive + factor
3−→ntotal, nactive

w =
D

d
→w, D

D =
Di + De

2
→D, Di, De

Di = D − d →Di, D

De = D + d →De, D

Fmax = R· smax + F0 →Fmax, R, smax, F0

Lk = nactive· d →Lk, nactive

L0 = Lk + 2·Lh →L0, Lk, Lh

notes

1. factor depends on end finish type and wire diameter;

2. k1 depends on material and the calculated wire diameter is matched to the
nearest in the table;

3. factor depends on end finish.

134

A.4.3 C-rules

C-rules are given in equation set (A.7).

d ≥ mat.dmin →d, mat (A.7)

d ≤ mat.dmax →d, mat

D ≤ mat.Dmax →D, mat

L0 ≤ mat.Lmax →L0, mat

nactive ≥ mat.nmin →nactive, mat

w ≥ mat.wmin →w, mat

w ≤ mat.wmax →w, mat

F0 ≤ 0.075 − 0.00375·w
0.45

·σmax·
0.4· d3

D
→F0

σ ≤ σmax →σ, σmax

F ≤ Fmax →F, Fmax

Lk ≤ L0 →Lk, L0

L0 ≤ L →L0, L

s ≤ smax →s, smax

L0 ≥ 2·D →L0, D

A.5 Torsion spring

This section states the knowledge base for synthesis, as implemented in the pro-
totype for torsion springs.

A.5.1 Parameters

Table A.17: torsion spring, parameters

type name description

performance M torque at rotation angle
F force at rotation angle
σrotation stress at rotation angle
safety factor safety factor on stress at rotation angle

scenario α rotation angle

embodiment D mean diameter of spring body
L0 length of spring body

Continued on next page

135

Table A.17 – continued from previous page

type name description

n number of coils
mat material
d wire diameter (DIN specified)
Lleg leg length

auxiliary w winding ratio
Di internal diameter
De external diameter
q stress peaking factor
Lwire length of (unwound) wire
a distance between coils
σmax maximum allowed stress

A.5.2 R-rules

R-rules are given in equation set (A.8).

Lwire = D·π·n (A.8)

= n·
√

(D·π)
2

+ (a + d)
2 1−→Lwire, D, n, a

L0 = (n + 1.5)· d

= n· (a + d) + d
2−→L0, n, a

q =
w + 0.07

w − 0.75
→q, w

M = F ·Lleg →M, F, Lleg

σrotation = M · q
π
32 · d3

→σrotation, M, q

α =
M ·Lwire

mat.E· π
64 · d4

→α, Lwire, M

safety factor =
σrotation

σmax

→safety factor, σrotation

w =
D

d
→w, D

D =
Di + De

2
→D, Di, De

Di = D − d →Di, D

136

De = D + d →De, D

d = k1·
3

√

F ·Lleg

1 − k2

k2 = 0.06·
3
√

M

Di

3−→d

σmax = 0.7· (mat.Rm1 − mat.Rm2)· log(d) →σmax

a = (0.24·w − 0.64)· d0.83 →a, w

notes

1. if (a + d) ≤ D
4 : use first equation, else use second;

2. if a = 0 : use first equation, else use second;

3. if d ≤ 5mm : k1 = 0.22, else k1 = 0.24;

A.5.3 C-rules

C-rules are given in equation set (A.9)

d ≥ mat.dmin →d, mat (A.9)

d ≤ mat.dmax →d, mat

D ≤ mat.Dmax →D, mat

L0 ≤ mat.Lmax →L0, ma

L0 ≥ n· d →L0, n, d

n ≥ mat.nmin →n, mat

w ≥ mat.wmin →w, mat

w ≤ mat.wmax →w, mat

σrotation ≤ σmax →σ, σmax

Lleg ≤ 5·D →Lleg, D

137

	Cover_02_B5.pdf
	Thesis Schotborgh FINAL2.pdf
	Titlepage
	Summary
	Samenvatting
	Table of Contents
	1 Introduction
	1.1 Software support for engineering design
	1.2 Solution presentation
	1.3 Multiple solutions
	1.4 Software development
	1.5 Focus and scope
	1.6 Research hypothesis
	1.7 Thesis outline

	2 Literature
	2.1 Theory of Technical Systems
	2.2 General Design Theory
	2.3 Function-Behavior-State
	2.4 Knowledge Intensive Engineering Framework
	2.5 KADS and KARL
	2.6 Computational Synthesis
	2.7 Algorithms
	2.7.1 Constraint Programming
	2.7.2 Optimization

	2.8 MOKA
	2.9 Knowledge Engineering
	2.10 Previous research

	3 Model of synthesis knowledge
	3.1 A model of design
	3.1.1 Information
	3.1.2 Processes
	3.1.3 Levels of abstraction

	3.2 What is synthesis knowledge
	3.3 A model of synthesis knowledge
	3.3.1 Challenges
	3.3.2 Embodiment
	3.3.3 Knowledge rules

	3.4 Synthesis algorithm
	3.5 Limitations
	3.5.1 Systems of equations
	3.5.2 Consistency and solvability
	3.5.3 Revising decisions
	3.5.4 Algorithm

	4 Knowledge engineering method
	4.1 Step 1: identify levels of abstraction
	4.2 Step 2: selection
	4.3 Step 3: analysis formalization
	4.3.1 Differences in analysis methods

	4.4 Step 4: synthesis formalization
	4.5 The knowledge document
	4.6 Limitations

	5 Software development method
	5.1 Step 1: overview
	5.2 Step 2: selection
	5.3 Step 3: modeling
	5.4 Step 4: automation and implementation
	5.5 step 5: user interaction

	6 Implementation and realization
	6.1 Architecture
	6.2 Industrial cases
	6.2.1 Optical chamber of an XRF spectrometer
	6.2.2 Baggage handling system

	6.3 Explicitly documented cases
	6.3.1 Belt drive
	6.3.2 Compression spring
	6.3.3 Extension spring
	6.3.4 Torsion spring

	6.4 Comparison
	6.4.1 R-rules
	6.4.2 Parameter dependency graphs
	6.4.3 Development time

	7 Conclusions & Recommendations
	7.1 Conclusions
	7.2 Recommendations
	7.2.1 Industrial decomposition
	7.2.2 Knowledge acquisition
	7.2.3 Modeling and automation
	7.2.4 Generic software development
	7.2.5 User interaction
	7.2.6 General

	List of References
	A Synthesis knowledge
	A.1 Optical chamber
	A.1.1 Elements and parameters
	A.1.2 X-rules
	A.1.3 R-rules
	A.1.4 C-rules

	A.2 Baggage handling systems
	A.2.1 Elements
	A.2.2 Parameters
	A.2.3 X-rules
	A.2.4 R-rules

	A.3 Compression spring
	A.3.1 Parameters
	A.3.2 R-rules
	A.3.3 C-rules

	A.4 Extension spring
	A.4.1 Parameters
	A.4.2 R-rules
	A.4.3 C-rules

	A.5 Torsion spring
	A.5.1 Parameters
	A.5.2 R-rules
	A.5.3 C-rules

